Log in

The use of spatial autocorrelation analysis to identify PAHs pollution hotspots at an industrially contaminated site

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The identification of contamination “hotspots” are an important indicator of the degree of contamination in localized areas, which can contribute towards the re-sampling and remedial strategies used in the seriously contaminated areas. Accordingly, 114 surface samples, collected from an industrially contaminated site in northern China, were assessed for 16 polycyclic aromatic hydrocarbons (PAHs) and were analyzed using multivariate statistical and spatial autocorrelation techniques. The results showed that the PCA leads to a reduction in the initial dimension of the dataset to two components, dominated by Chr, Bbf&Bkf, Inp, Daa, Bgp, and Nap were good representations of the 16 original PAHs; Global Moran’s I statistics indicated that the significant autocorrelations were detected and the autocorrelation distances of six indicator PAHs were 750, 850, 1,200, 850, 750, and 1,200 m, respectively; there were visible high–high values (hotspots) clustered in the mid-bottom part of the site through the Local Moran’s I index analysis. Hotspot identification and spatial distribution results can play a key role in contaminated site investigation and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PAH:

Polycyclic aromatic hydrocarbon

Nap:

Naphthalene

Acy:

Acenaphthylene

Ace:

Acenaphthene

Fle:

Fluorine

Phe:

Phenanthrene

Ant:

Anthracene

Fla:

Fluoranthene

Pyr:

Pyrene

Baa:

Benzo(a)anthracene

Chr:

Chrysene

Bbf&Bkf:

Benzo(b,k)fluoranthene

Bap:

Benzo(a)pyrene

Daa:

Dibenzo(a,h)anthracene

Bgp:

Benzo(g,h,i)perylene

Inp:

Indeno(1,2,3-c,d)pyrene

PCA:

Principal component analysis

References

  • Barreto-Neto, A. A., & Silva, A. B. D. S. (2004). Methodological criteria for auditing geochemical data sets aimed at selecting anomalous lead–zinc–silver areas using geographical information systems. Journal of Geochemical Exploration, 84(2), 93–101.

    Article  CAS  Google Scholar 

  • Blake, W. H., Walsh, R. P., Reed, J. M., Barnsley, M. J., & Smith, J. (2007). Impacts of landscape remediation on the heavy metal pollution dynamics of a lake surrounded by non-ferrous smelter waste. Environmental Pollution, 148(1), 268–280.

    Article  CAS  Google Scholar 

  • Bohórquez, L., Gómez, I., & Santa, F. (2011). Methodology for the discrimination of areas affected by forest fires using satellite images and spatial statistics. Procedia Environmental Sciences, 7, 389–394.

    Article  Google Scholar 

  • Brody, S. D., Highfield, W. E., & Thornton, S. (2006). Planning at the urban fringe: an examination of the factors influencing nonconforming development patterns in southern Florida. Environment and Planning B: Planning and Design, 33(1), 75–96.

    Article  Google Scholar 

  • Carson, J. H. (2001). Analysis of composite sampling data using the principle of maximum entropy. Environmental and Ecological Statistics, 8(3), 201–211.

    Article  Google Scholar 

  • Castillo, K. C., Körbl, B., Stewart, A., Gonzalez, J. F., & Ponce, F. (2011). Application of spatial analysis to the examination of dengue fever in Guayaquil, Ecuador. Procedia Environmental Sciences, 7, 188–193.

    Article  Google Scholar 

  • Cliff, A. D., & Ord, J. K. (1981). Spatial processes: models and applications. London: Pion.

    Google Scholar 

  • Cressie, N. (1991). Statistics for spatial data. New York: Wiley.

    Google Scholar 

  • Epperson, B. K. (2003). Covariances among join-count spatial autocorrelation measures. Theoretical Population Biology, 64(1), 81–87.

    Article  Google Scholar 

  • Getis, A., & Ord, J. K. (1996). Local spatial statistics: an overview. In P. Longley & M. Batty (Eds.), Spatial analysis: modelling in a GIS Environment. Cambridge: GeoInformation International.

    Google Scholar 

  • Grimalt, J. O., van Drooge, B. L., Ribes, A., Fernández, P., & Appleby, P. (2004). Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environmental Pollution, 131, 13–24.

    Article  CAS  Google Scholar 

  • Huo, X. N., Li, H., Sun, D. F., Zhou, L. D., & Li, B. G. (2012). Combining geostatistics with Moran’s I analysis for map** soil heavy metals in Bei**g, China. International Journal of Environmental Research and Public Health, 9(3), 995–1017.

    Article  CAS  Google Scholar 

  • **g, N., & Cai, W. X. (2010). Analysis on the spatial distribution of logistics industry in the developed East Coast Area in China. The Annals of Regional Science, 45(2), 331–350.

    Article  Google Scholar 

  • Kabos, S., & Csillag, F. (2002). The analysis of spatial association on a regular lattice by join-count statistics without the assumption of first-order homogeneity. Computers & Geosciences, 28(8), 901–910.

    Article  Google Scholar 

  • Komnitsas, K., & Modis, K. (2009). Geostatistical risk estimation at waste disposal sites in the presence of hot spots. Journal of Hazardous Materials, 164(2–3), 1185–1190.

    Article  CAS  Google Scholar 

  • Kulldorff, M. (1997). A spatial scan statistic. Commun. Statist. Theory Methods, 26(6), 1481–1496.

    Article  Google Scholar 

  • Lai, D. J. (2009). Testing spatial randomness based on empirical distribution function: A study on lattice data. Journal of Statistical Planning and Inference, 139(2), 136–142.

    Article  Google Scholar 

  • Luo, Q., Catney, P., & Lerner, D. (2009). Risk-based management of contaminated land in the UK: lessons for China? Journal of Environmental Management, 90(2), 1123–1134.

    Article  CAS  Google Scholar 

  • Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2012). Multi-criteria ranking and source identification of metals in public playgrounds in Queensland, Australia. Geoderma, 173–174, 173–183.

    Article  Google Scholar 

  • Patil, G. P., & Taillie, C. (2001). Use of best linear unbiased prediction for hot spot identification in two-way compositing. Environmental and Ecological Statistics, 8(2), 163–169.

    Article  Google Scholar 

  • Prasannakumar, V., Vijith, H., Charutha, R., & Geeth, N. (2011). Spatio-temporal clustering of road accidents: GIS based analysis and assessment. Procedia - Social and Behavioral Sciences, 21, 317–325.

    Article  Google Scholar 

  • Sinha, P., Lambert, M. B., & Schew, W. A. (2007). Evaluation of a risk-based environmental hot spot delineation algorithm. Journal of Hazardous Materials, 149(2), 338–345.

    Article  CAS  Google Scholar 

  • Su, S. L., Jiang, Z. L., Zhang, Q., & Zhang, Y. (2011). Transformation of agricultural landscapes under rapid urbanization: a threat to sustainability in Hang-Jia-Hu region, China. Applied Geography, 31(2), 439–449.

    Article  Google Scholar 

  • Tiefelsdorf, M., & Boots, B. (1997). A note on the extremities of Local Moran’s I is and their impact on Global Moran’s I. Geographical Analysis, 29(3), 248–257.

    Article  Google Scholar 

  • USEPA. SW-846 method 8270D. (2007a). Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8270d.pdf. Accessed February 2007.

  • USEPA. SW-846 method 8272. (2007b). Parent and alky polycyclic aromatic in sediment pore water by solid -phase microextraction and gas chromatography/mass spectrometry in selected ion monitoring mode. http://www.epa.gov/osw/hazard/testmethods/pdfs/8272.pdf. Accessed December 2007.

  • Wang, J., Zhu, L. Z., & Shen, X. Y. (2003). PAHs pollution in air of coke plant and health risk assessment. Environment Science, 24(1), 135–138 (in Chinese).

    Google Scholar 

  • Wang, J. G., Zhan, X. H., Zhou, L. X., & Lin, Y. S. (2010). Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil. Chemosphere, 80(8), 837–844.

    Article  CAS  Google Scholar 

  • Wang, F. S., **ng, S. L., & Huo, X. R. (2012). Study on the distribution pattern of PAHs in the coking dust from the coking environment. Procedia Engineering, 45, 959–961.

    Article  CAS  Google Scholar 

  • Zhang, C. S., & McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119(3–4), 261–75.

    Article  CAS  Google Scholar 

  • Zhang, C. S., Luo, L., Xu, W. L., & Ledwith, V. (2008). Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of the Total Environment, 398(1–3), 212–221.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Environmental Protection Public Welfare Research Funds (grant no. 201009015) and Young Scientists Fund of NSFC (grant no. 40901249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanlin Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Bi, R., Wang, S. et al. The use of spatial autocorrelation analysis to identify PAHs pollution hotspots at an industrially contaminated site. Environ Monit Assess 185, 9549–9558 (2013). https://doi.org/10.1007/s10661-013-3272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3272-6

Keywords

Navigation