Log in

Effect of data pre-treatment procedures on principal component analysis: a case study for mangrove surface sediment datasets

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Principal component analysis (PCA) is capable of handling large sets of data. However, lack of consistent method in data pre-treatment and its importance are the limitations in PCA applications. This study examined pre-treatments methods (log (x + 1) transformation, outlier removal, and granulometric and geochemical normalization) on dataset of Mengkabong Lagoon, Sabah, mangrove surface sediment at high and low tides. The study revealed that geochemical normalization using Al with outliers removal resulted in a better classification of the mangrove surface sediment than that outliers removal, granulometric normalization using clay and log (x + 1) transformation. PCA output using geochemical normalization with outliers removal demonstrated associations between environmental variables and tides of mangrove surface sediment, Mengkabong Lagoon, Sabah. The PCA outputs at high and low tides also provided to better interpret information about the sediment and its controlling factors in the intertidal zone. The study showed data pre-treatment method to be a useful procedure to standardize the datasets and reducing the influence of outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aris, A. Z., Abdullah, M. H., Ahmed, A., & Woong, K. K. (2007). Controlling factors of groundwater hydrochemistry in a small island’s aquifer. International journal of Environmental Science and Technology, 4, 441–450.

    CAS  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and waste water (19th ed.). Washington: Amer Public Health Assn.

    Google Scholar 

  • Barcelo, D., & Petrovic, M. (2011). The Ebro River Basin. Berlin: Springer.

    Book  Google Scholar 

  • Chidambaram, S., Senthil Kumar, G., Prasanna, M. V., John Peter, A., Ramanathan, A. L., & Srinivasamoorthy, K. (2009). A study on the hydrogeology and hydrogeochemistry of groundwater from different depths in a coastal aquifer: Annamalai Nagar, Tamilnadu, India. Environmental Geology, 57, 59–73.

    Article  CAS  Google Scholar 

  • Church, A. H. (1989). The ionic of the sea. The Phytologist, 68, 239–247.

    Google Scholar 

  • Deng, Z., Sato, Y., & Jia, H. (2008). Map** land cover patterns of Gunma Prefecture, Japan, by using remote sensing. Remote Sensing, 5, 1–15.

    Google Scholar 

  • El Nemr, A., Khaled, A., & Sikaily, A. E. (2006). Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf. Environmental Monitoring and Assessment, 118, 89–112.

    Article  CAS  Google Scholar 

  • Environmental Impact Assessment. (1992). Proposed mangrove paradise resort complex on LA 91040377 Tuaran, Sabah. Sabah: Perunding Sekitar.

  • Gargouri, D., Azri, C., Serbaji, M. M., Jedoui, Y., & Montacer, M. (2011). Heavy metal concentrations in the surface marine sediments of Sfax Coast, Tunisia. Environmental Monitoring and Assessment, 175, 519–530.

    Article  CAS  Google Scholar 

  • Grande, J. A., Borrego, J., Morales, J. A., & Torre, M. L. (2003). A description of how metal pollution occurs in the Tinto-Odiel Rias (Huelva-Spain) through the application of cluster analysis. Marine Pollution Bulletin, 46, 475–480.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.

    Article  Google Scholar 

  • Hirosawa, Y., Marsh, S. E., & Kliman, D. H. (1996). Application of standardized principal component analysis to land-cover characterization using multitemporal AVHRR data. Remote Sensing of Environment, 58, 267–281.

    Article  Google Scholar 

  • Hsue, Z. Y., & Chen, Z. S. (2000). Monitoring the changes of redox potential, ph and electrical conductivity of the mangrove soils in Northern Taiwan. Proceeding of Natural Science Council, 24, 143–150.

    Google Scholar 

  • Huang, K., & Lin, S. (2003). Consequences and implications of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere, 53, 1113–1121.

    Article  CAS  Google Scholar 

  • Hussein, A. H., & Rabenhorst, M. C. (2001). Tidal inundation of transgressive coastal areas: pedogenesis of salinization and alkalinization. Soil Science Society of American Journal, 65, 536–544.

    Article  CAS  Google Scholar 

  • Iyengar, R. N. (1991). Application of principal component analysis to understand variability of rainfall. Proceeding of Indian Academy Science (Earth Planet. Sci.), 100, 105–126.

    Google Scholar 

  • Koterba, M. T., Wilde, F. D., & Lapham, W. W. (1995). Ground-water data-collection protocols and procedures for the National Water-Quality Assessment Program—Collection and documentation of water-quality samples and related data. U.S. Geological Survey Open-File Report 95-399.

  • Leardi, R., Armanino, C., Lanteri, S., & Alberotanza, L. (2001). Three-mode principal component analysis of monitoring data from Venice lagoon. Journal of Chemometrics, 14, 187–195.

    Article  Google Scholar 

  • Ma, H., Liu, L., & Chen, T. (2010). Water security assessment in Haihe River Basin using principal component analysis based on Kendall τ. Environmental Monitoring and Assessment, 163, 539–544.

    Article  Google Scholar 

  • McNabola, A., Broderick, B. M., & Gill, L. W. (2009). A principal components analysis of the factors effecting personal exposure to air pollution in urban commuters in Dublin, Ireland. Journal of Environmental Science and Health, Part A. Toxic / Hazardous Substances and Environmental Engineering, 44, 1219–1226.

    Article  CAS  Google Scholar 

  • Morad, S. (1998). Carbonate cementation in sandstones: Distribution patterns and geochemical evolution. London: Blackwell Science Limited.

    Google Scholar 

  • Neto, J. A. B., Gingele, F. X., Leipe, G., & Brehme, I. (2006). Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environmental Geology, 49, 1051–1063.

    Article  Google Scholar 

  • Parra, G. A., Mouchot, M.-C., & Roux, C. (1996). A multitemporal land cover change analysis tool using change vector and principal component analysis. Proceeding of Geoscience and Remote Sensing Symposium. 27–31 May 1996. Lincoln, USA.

  • Peré-Trepat, E., Petrovic, M., Barcelo, D., & Tauler, R. (2004). Application of chemometric methods to the investigation of main microcontaminant sources of endocrine disruptors in coastal and harbour waters and sediments. Analytical and Bioanalytical Chemistry, 378, 642–654.

    Article  Google Scholar 

  • Pineiro, A. M., Marcos, A., Fisher, A., & Hill, S. J. (2001). Evaluation of the effect of data pre-treatment procedures on classical pattern recognition and principal component analysis: a case study for the geographical classification of tea. Journal of Environmental Monitoring, 3, 352–360.

    Article  Google Scholar 

  • Praveena, S. M., Ahmed, A., Radojevic, M., Abdullah, M. H., & Aris, A. Z. (2008a). Multivariate and geo-accumulation index evaluation in mangrove surface sediment of Mengkabong. Bulletin of Environmental Contamination and Toxicology, 81, 52–63.

    Article  CAS  Google Scholar 

  • Praveena, S. M., Ahmed, A., Radojevic, M., Abdullah, M. H., & Aris, A. Z. (2008b). Heavy metals in mangrove surface sediment of Mengkabong Lagoon, Sabah: multivariate and geo-accumulation index approaches. International Journal of Environmental Research, 2, 139–148.

    CAS  Google Scholar 

  • Preda, M., & Cox, M. E. (2000). Sediment-water interaction, acidity and other water quality parameters in a subtropical setting, Pimpama river, Southeast Queensland. Environmental Geology, 39, 319–329.

    Article  CAS  Google Scholar 

  • Radojevic, M., & Bashkin, V. N. (1999). Practical environmental analysis. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Ramanathan, A. L., Subramaniam, V., Ramesh, R., Chidambaram, S., & James, A. (1999). Environmental geochemistry of the Pichavaram mangrove ecosystem (tropical), Southeast Coast of India. Environmental Geology, 37, 223–233.

    Article  CAS  Google Scholar 

  • Reid, M. K., & Spencer, K. L. (2009). Use of principal components analysis (PCA) on estuarine sediment datasets: the effect of data pre-treatment. Environmental Pollution, 157, 2275–2281.

    Article  CAS  Google Scholar 

  • Roberts, S., & Martin, M. A. (2006). Using supervised principal components analysis to assess multiple pollutant effects. Environmental Health Perspectives, 114, 1877–1882.

    Google Scholar 

  • Rodrigo, A. G. (1989). Surficial sediment heavy metal associations in the Avon-Heathcote Estuary, New Zealand. New Zealand Journal of Marine and Freshwater Research, 23, 255–262.

    Article  CAS  Google Scholar 

  • Shrestha, S., Kazama, F., & Nakamura, T. (2008). Use of principal component analysis, factor analysis and discriminant analysis to evaluate spatial and temporal variations in water quality of the Mekong River. Journal of Hydroinformatics, 10, 43–56.

    Article  Google Scholar 

  • Singh, K. K., & Singh, S. V. (1996). Space-time variation and regionalization of seasonal and monthly summer monsoon rainfall of the sub-Himalayan region and Gangetic plain of India. Climate Research, 6, 251–262.

    Article  Google Scholar 

  • Town and Regional Planning Department. (2003). Project Sabah, 2003. Kota Kinabalu: Environmental Local Planning (ELP).

    Google Scholar 

  • Webster, R. (2001). Statistics to support soil research and their presentation. European Journal of Soil Science, 52, 331–340.

    Article  CAS  Google Scholar 

  • Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metals contamination in urban dusts of **’an, Central China. Science of the Total Environment, 355, 176–186.

    Article  Google Scholar 

  • Zhou, H., Peng, X., & Pan, J. (2004). Distribution, source and enrichment of some chemical elements in sediments of the Pearl river estuary, China. Continental Shelf Research, 24, 1857–1875.

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank Mr. Asram and Mr. Neldin Jeoffrey for assisting with the field sampling. The primary author gratefully acknowledges her Universiti Malaysia Sabah Scholarship (YTL Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarva Mangala Praveena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveena, S.M., Kwan, O.W. & Aris, A.Z. Effect of data pre-treatment procedures on principal component analysis: a case study for mangrove surface sediment datasets. Environ Monit Assess 184, 6855–6868 (2012). https://doi.org/10.1007/s10661-011-2463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2463-2

Keywords

Navigation