Log in

Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pul** effluent

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A new method has been developed for the determination of chemical oxygen demand (COD) in pul** effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02–2.45 mg/L (model 1) and 2.13–2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pul** effluent as an environmentally friendly approach with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuzaid, N. S., Al-Malack, M. H., & El-Mubarak, A. H. (1997). Alternative method for determination of the chemical oxygen demand for colloidal polymeric wastewater. Bulletin of Environmental Contamination and Toxicology, 59, 626–630.

    Article  CAS  Google Scholar 

  • Apppleton, J. M. H., Tyson, J. F., & Mounce, R. P. (1986). The rapid determination of chemical oxygen demand in waste waters and effluents by flow injection analysis. Analytica Chimica Acta, 179, 267–278.

    Article  Google Scholar 

  • Association of Official Analytical Chemists (AOAC). (1990). Official methods of analysis (15th ed.). Arlington: Kenneth Helrick

    Google Scholar 

  • Astigarraga, B. E. B., Moraes, D. N., & Comasseto, J. V. (1999). Highly unsaturated conjugated system from vinylic tellurides. Tetrahedron Letters, 40, 265–268.

    Article  Google Scholar 

  • Berglund, A., & Wold, S. (1997). INLR, implicit non-linear latent variable regression. Journal of Chemometrics, 11, 141–147.

    Article  CAS  Google Scholar 

  • Cámara, M. S., Mastandrea, C., & Goicoechea, H. C. (2005). Chemometrics-assisted simple UV-spectroscopic determination of carbamazepine in human serum and comparison with reference methods. Journal of Biochemical and Biophysical Methods, 64, 153–166.

    Article  Google Scholar 

  • Cardoso, M., Oliveira, E. D., & Passos, M. L. (2009). Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills. Fuel, 88, 756–763.

    Article  CAS  Google Scholar 

  • Coello, J., Maspoch, S., & Villegas, N. (2000). Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi- and three-way partial least-squares calibration. Talanta, 53, 627–637.

    Article  CAS  Google Scholar 

  • Cornard, J. P., Rasmiwetti, & Merlin, J. C. (2005). Molecular structure and spectroscopic properties of 4-nitrocatechol at different pH: UV-visible, Raman, DFT and TD-DFT calculations. Chemical Physics, 309, 239–249.

    Article  CAS  Google Scholar 

  • Culzoni, M. J., De Zan, M. M., & Robles, J. C. (2005). Chemometrics-assisted UV-spectroscopic strategies for the determination of theophylline in syrups. Journal of Pharmaceutical and Biomedical Analysis, 39, 1068–1074.

    Article  CAS  Google Scholar 

  • Elicabe, G., & Frontini, G. (1996). Determination of the particle size distribution of latex using a combination of elastic light scattering and turbidimetry: A simulation study. Journal of Colloid and Interface Science, 181, 669–672.

    Article  CAS  Google Scholar 

  • Fang, G. Z., & Liu, N. (2001). Determination of eight essential amino acids in mixtures by chemometrics-spectrophotometry without separation. Analytica Chimica Acta, 445, 245–253.

    Article  CAS  Google Scholar 

  • Galeano, D. T., Durán, M. I., Guiberteau, C. A., & Alexandre, F. M. F. (2004). Voltammetric behavior and determination of tocopherols with partial least squares calibration: Analysis in vegetable oil simples. Analytica Chimica Acta, 511, 231–238.

    Article  Google Scholar 

  • Gonzalez, V. D. G., Gugliotta, L. M., Vega, J. R., et al. (2005). Contamination by larger particles of two almost-uniform latices: Analysis by combined dynamic light scattering and turbidimetry. Journal of Colloid and Interface Science, 285, 581–589.

    Article  CAS  Google Scholar 

  • Hejzlar, J., & Kopacek, J. (1990). Determination of low chemical oxygen demand values in water by the dichromate semi-micro method. Analyst, 115, 1463–1467.

    Article  CAS  Google Scholar 

  • Kowalski, B. R., & Seasholtz, M. B. (1988). Recent developments in multivariate calibration. Journal of Chemometrics, 2, 93–96.

    Article  Google Scholar 

  • Liu, W., Zhang, Z. J., & Zhang, Y. Y. (2008). Chemiluminescence micro-flow system for rapid determination of chemical oxygen demand in water. Microchimica Acta, 160, 141–146.

    Article  CAS  Google Scholar 

  • Liu, Y., Ji, H. W., **n, H. Z. et al. (2006). A new spectrophotometric method for measuring COD of seawater. Journal of Ocean University of China, 5(2), 137–140.

    Article  CAS  Google Scholar 

  • Massart, D. J., Vandegisnte, B. M. G., Buydens, L. M. C., De Jong, S., Lewi, P. J., & Smeyers-Verbeke, J. (1997). Handbook of chemometrics and qualimetrics: A and B. Amsterdam: Elsevier.

    Google Scholar 

  • Medalia, A. (1951). Test for traces of organic matter in water. Analytical Chemistry, 23, 1318–1320.

    Article  CAS  Google Scholar 

  • Miller, J. N., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry (4th ed.). Edinburgh: Prentice Hall.

    Google Scholar 

  • Moraes, S. G., Durán, N., & Freire, R. S. (2006). Remediation of Kraft E1 and black liquor effluents by biological and chemical processes. Environmental Chemistry Letters, 4, 87–91.

    Article  CAS  Google Scholar 

  • Nagarathnamma, R., Bajpai, P., & Bajpai, P. K. (1999). Studies on decolourization, degradation and detoxification of chlorinated lignin compounds in kraft bleaching effluents by Ceriporiopsis subermispora. Process Biochemistry, 34, 939–948.

    Article  CAS  Google Scholar 

  • Neto, C. P., Belino, E., Evtuguin, D., & Silvestre, A. J. D. (1999). Total fractionation and analysis of organic components of industrial Eucalyptus globulus kraft black liquor. Appita Journal, 52(3), 213–217.

    Google Scholar 

  • Santoyo, E., & Surendra, P. V. (2003). Determination of lanthanides in synthetic standards by reversedphase high-performance liquid chromatography with the aid of a weighted least-squares regression model estimation of method sensitivities and detection limits. Journal of Chromatography A, 997, 171–182.

    Article  CAS  Google Scholar 

  • Shibata, S., Furukawa, M. & Goto, K. (1973). Dual-wavelength spectrophotometry: Part VI. Qualitative and quantitative analysis by means of first-derivative spectra. Analytica Chimica Acta, 65(1), 49–58.

    Article  CAS  Google Scholar 

  • Shibata, S., Furukawa, M., & Nakashima, R. (1976). Syntheses of azo dyes containing 4,5-diphenylimidazole and their evaluation as analytical reagents. Analytica Chimica Acta, 81, 131–141.

    Article  CAS  Google Scholar 

  • Silva, C. R., Conceicão, C. D. C., Bonifácio, V. G., Filho, O. F. & Teixeira, M. F. S. (2009). Determination of the chemical oxygen demand (COD) using a copper electrode: A clean alternative method. Journal of Solid State Electrochemistry, 13, 665–669.

    Article  CAS  Google Scholar 

  • Thomas, E. V., & Haaland, D. M. (1988). Partial least-squares methods for spectral analyses: II. Application to simulated and glass spectral data. Analytical Chemistry, 60, 1193–1202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honglei Chen or Yuancai Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Chen, Y., Zhan, H. et al. Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pul** effluent. Environ Monit Assess 175, 321–329 (2011). https://doi.org/10.1007/s10661-010-1534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1534-0

Keywords

Navigation