Log in

Rayleigh Surface Waves on a Kelvin-Voigt Viscoelastic Half-Space

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper we consider the propagation of Rayleigh surface waves in an exponentially graded half-space made of an isotropic Kelvin-Voigt viscoelastic material. Here we take into account the effect of the viscoelastic dissipation energy upon the corresponding wave solutions. As a consequence we introduce the damped in time wave solutions and then we treat the Rayleigh surface wave problem in terms of such solutions. The explicit form of the secular equation is obtained in terms of the wave speed and the viscoelastic inhomogeneous profile. Furthermore, we use numerical methods and computations to solve the secular equation for some special homogeneous materials. The results sustain the idea, existent in literature on the argument, that there is possible to have more than one surface wave for the Rayleigh wave problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lord, R.: On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 17, 4–11 (1885)

    Google Scholar 

  2. Hunter, S.C.: Viscoelastic waves. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. I. North-Holland, Amsterdam (1962)

    Google Scholar 

  3. Lockett, F.J.: The reflection and refraction of waves at an interface between viscoelastic materials. J. Mech. Phys. Solids 10, 53–64 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Hayes, M.A., Rivlin, R.S.: Propagation of sinusoidal small-amplitude waves in a deformed viscoelastic solid. I. J. Acoust. Soc. Am. 46, 610–616 (1969)

    Article  ADS  MATH  Google Scholar 

  5. Hayes, M.A., Rivlin, R.S.: Propagation of sinusoidal small-amplitude waves in a deformed viscoelastic solid. II. J. Acoust. Soc. Am. 51, 1652–1663 (1972)

    Article  ADS  MATH  Google Scholar 

  6. Hayes, M.A., Rivlin, R.S.: Longitudinal waves in a linear viscoelastic material. Z. Angew. Math. Phys. 23, 153–156 (1972)

    Article  MATH  Google Scholar 

  7. Hayes, M.A., Rivlin, R.S.: Plane waves in linear viscoelastic materials. Q. Appl. Math. 32, 113–121 (1974)

    MATH  Google Scholar 

  8. Currie, P.K., Hayes, M.A., O’Leary, P.M.: Viscoelastic Rayleigh waves. Q. Appl. Math. 35, 35–53 (1977)

    MATH  Google Scholar 

  9. Currie, P.K., O’Leary, P.M.: Viscoelastic Rayleigh waves II. Q. Appl. Math. 36, 445–454 (1977)

    Google Scholar 

  10. O’Leary, P.M.: Viscoelastic Rayleigh waves for constant Poisson’s ratio. Proc. R. Ir. Acad., Sci. 81A, 144–155 (1981)

    MathSciNet  Google Scholar 

  11. Carcione, J.M.: Rayleigh waves in isotropic viscoelastic media. Geophys. J. Int. 108, 453–464 (1992)

    Article  ADS  Google Scholar 

  12. Romeo, M.: Rayleigh waves on a viscoelastic solid half-space. J. Acoust. Soc. Am. 110, 59–67 (2001)

    Article  ADS  Google Scholar 

  13. Nkemzi, D.: A new formula for the velocity of Rayleigh waves. Wave Motion 26, 199–205 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ivanov, T.P., Savova, R.: Viscoelastic surface waves of an assigned wavelength. Eur. J. Mech. A, Solids 24, 305–310 (2005)

    Article  ADS  MATH  Google Scholar 

  15. Ivanov, T.P., Savova, R.: Thermoviscoelastic surface waves of an assigned frequency. IMA J. Appl. Math. 74, 250–263 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Ivanov, T.P., Savova, R.: Thermoviscoelastic surface waves of an assigned wavelength. Int. J. Solids Struct. 47, 1972–1978 (2010)

    Article  MATH  Google Scholar 

  17. Savova, R., Ivanov, T.P.: On viscous effects in surface wave propagation. J. Theor. Appl. Mech. 35, 25–34 (2007)

    MathSciNet  Google Scholar 

  18. Ieşan, D.: On a theory of thermoviscoelastic materials with voids. J. Elast. 104, 369–384 (2011)

    Article  MATH  Google Scholar 

  19. Passarella, F., Tibullo, V., Zampoli, V.: On microstretch thermoviscoelastic composite materials. Eur. J. Mech. A, Solids 37, 294–303 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Eringen, A.C.: Mechanics of Continua. Wiley, New York (1967)

    MATH  Google Scholar 

  21. Appleby, J.A.D., Fabrizio, M., Lazzari, B., Reynolds, D.W.: On exponential asymptotic stability in linear viscoelasticity. Math. Models Methods Appl. Sci. 16(10), 1677–1694 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Amendola, G., Fabrizio, M., Golden, J.M.: Thermodynamics of Materials with Memory: Theory and Applications. Springer, New York (2012)

    Book  Google Scholar 

  23. Destrade, M.: Seismic Rayleigh waves on an exponentially graded, orthotropic half-space. Proc. R. Soc. A 463, 495–502 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

We express our gratitude to the referees for their helpful suggestions and comments. The work by the author SC was supported by the Romanian Ministry of Education and Research and Innovation through the CNCS grant PN-II-ID-PCE-2012-4-0068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Chiriţă.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiriţă, S., Ciarletta, M. & Tibullo, V. Rayleigh Surface Waves on a Kelvin-Voigt Viscoelastic Half-Space. J Elast 115, 61–76 (2014). https://doi.org/10.1007/s10659-013-9447-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-013-9447-0

Keywords

Mathematics Subject Classification (2000)

Navigation