Log in

Active Stress vs. Active Strain in Mechanobiology: Constitutive Issues

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Many biological tissues exhibit a non-standard continuum mechanics behavior: they are able to modify their placement in absence of external loads. The activity of the muscles is usually represented in solid mechanics in terms of an active stress, to be added to the standard one. A less popular approach is to introduce a multiplicative decomposition of the tensor gradient of deformation in two factors: the passive and the active one. Both approaches should satisfy due mathematical properties, namely frame indifference and ellipticity of the total stress. At the same time, the constitutive laws should reproduce the observed physiological behavior of the specific living tissue. In this paper we focus on cardiac contractility. We review some constitutive examples of active stress and active strain taken from the literature and we discuss them in terms of precise mathematical and physiological properties. These arguments naturally suggest new possible models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosi, D., Arioli, G., Nobile, F., Quarteroni, A.: Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J. Appl. Math. 71, 605–621 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2005)

    MATH  Google Scholar 

  3. Böl, M., Abilez, O.J., Assar, A.N., Zarins, C.K., Kuhl, E.: Computational modeling of muscular thin films for cardiac repair. Comp. Mech. 43, 535–544 (2009)

    Article  Google Scholar 

  4. Campbell, K.B., Simpson, A.M., Campbell, S.G., Granzier, H.L., Slinker, B.K.: Dynamic left ventricular elastance: a model for integrating cardiac muscle contraction into ventricular pressure-volume relationships. J. Appl. Phys. 104, 958–975 (2008)

    Article  Google Scholar 

  5. Cherubini, C., Filippi, S., Nardinocchi, P., Teresi, L.: An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog. Biophys. Mol. Biol. 97, 562–573 (2008)

    Article  Google Scholar 

  6. DiCarlo, A., Quiligotti, S.: Growth and balance. Mech. Res. Commun. 29, 449–456 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, J.M.: The mechanical activity of the heart. In: Johnson, L.R. (ed.) Essential Medical Physiology, 3rd edn., pp. 201–213. Elsevier, Amsterdam (2003)

    Google Scholar 

  8. Göktepe, S., Kuhl, E.: Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput. Mech. 45, 227–243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 367, 3445–3475 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Iribe, G., Helmes, M., Kohl, P.: Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am. J. Physiol., Heart Circ. Physiol. 292, H1487–H1497 (2007)

    Article  Google Scholar 

  11. Liu, I.-S.: Continuum Mechanics. Springer, New York (2002)

    MATH  Google Scholar 

  12. Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005)

    Article  ADS  MATH  Google Scholar 

  13. Murtada, S., Kroon, M., Holzapfel, G.A.: A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech. Model. Mechanobiol. 9, 749–762 (2010)

    Article  Google Scholar 

  14. Nardinocchi, P., Teresi, L.: On the active response of soft living tissues. J. Elast. 88, 27–39 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nardinocchi, P., Teresi, L., Varano, V.: Myocardial contractions and the ventricular pressure-volume relationship. ar**v:1005.5292v1 [q-bio.TO] (2010)

  16. Niederer, S.A., Smith, N.P.: An improved numerical method for strong coupling of excitation and contraction models in the heart. Prog. Biophys. Mol. Biol. 96, 90–111 (2008)

    Article  Google Scholar 

  17. Panfilov, A.V., Keldermann, R.H., Nash, M.P.: Self-organized pacemakers in a coupled reaction–diffusion-mechanics system. Phys. Rev. Lett. 95, 258104 (2005)

    Article  ADS  Google Scholar 

  18. Pathmanathan, P., Chapman, S.J., Gavaghan, D.J., Whiteley, J.P.: Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q. J. Mech. Appl. Math. 63, 375–399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Redaelli, A., Pietrabissa, R.: A structural model of the left venricle including muscle fibres and coronary vessels: mechanical behaviour in normal conditions. Meccanica 32, 53–70 (1997)

    Article  MATH  Google Scholar 

  20. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  21. Smith, N.P., Nickerson, D.P., Crampin, E.J., Hunter, P.J.: Multiscale computational modelling of the heart. Acta Numer. 13, 371–431 (2004)

    Article  MathSciNet  Google Scholar 

  22. Stålhand, J., Klarbring, A., Holzapfel, G.A.: Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Prog. Biophys. Mol. Biol. 96, 465–481 (2008)

    Article  Google Scholar 

  23. Taber, L.A.: Towards a unified theory for morphomechanics. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 367, 3555–3583 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Taber, L.A., Perucchio, R.: Modeling Heart Development. J. Elast. 61, 165–197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Whiteley, J., Bishop, M., Gavaghan, D.: Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations. Bull. Sci. Math. 69, 2199–2225 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ambrosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosi, D., Pezzuto, S. Active Stress vs. Active Strain in Mechanobiology: Constitutive Issues. J Elast 107, 199–212 (2012). https://doi.org/10.1007/s10659-011-9351-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9351-4

Keywords

Mathematics Subject Classification (2000)

Navigation