Log in

Mind the Gap: The Shape of the Free Surface of a Rubber-Like Material in Proximity to a Rigid Contactor

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Extending Andreussi and Gurtin's [1] pioneering work on the wrinkling of a free surface, we investigate the wrinkling stability of an incompressible elastic-like half-space whose surface is proximate to a contactor. Assuming a plane-strain deformation and accounting for both surface prestress and curvature dependence of the surface free-energy density, we impose balances of forces and torques both in the bulk and on the surface. From the resulting linearized bulk and superficial equations, we derive a quintic dimensionless dispersion relation and perform a parametric study to see when stable or unstable behavior of the free surface is manifested. When compared with the quadratic dispersion relation of Andreussi and Gurtin [1], we see here that the combined effects associated with surface prestress, curvature-dependence of the surface free-energy density, and the interactions between the surface and the proximate contactor always lead to an increased number of linearly stable wrinkled configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Andreussi and M.E. Gurtin, On the wrinkling of a free surface. J. Appl. Phys. 48 (1977) 3798–3799.

    Article  ADS  Google Scholar 

  2. C.A. Brooks, J. Thiele, C.W. Frank, D.F. O'Brien, W. Knoll, G.G. Fuller and C.R. Robertson, Surface shear rheology of a polymerizable lipopolymer monolayer. Langmuir 18 (2002) 2166–2173.

    Article  Google Scholar 

  3. M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, and D.T. Burke, An integrated nanoliter DNA analysis device. Science 282 (1998) 484–487.

    Article  ADS  Google Scholar 

  4. D.E. Carlson, On some new results in dimensional analysis. Arch. Ration. Mech. Anal. 68 (1978) 191–210.

    Article  MATH  Google Scholar 

  5. R.C. Cammarata, Surface and interface stress effects in thin films. Prog. Surf. Sci. 46 (1994) 1–38.

    Article  Google Scholar 

  6. C.J. Coakley and D. Tabor, Direct measurement of van der Waals forces between solids in air. J. Phys., D Appl. Phys. 11 (1978) L77–L82.

    Article  ADS  Google Scholar 

  7. A. Ghatak, M.K. Chaudhury, V. Shenoy and A. Sharma, Meniscus instability in a thin elastic film. Phys. Rev. Lett. 85 (2000) 4329–4332.

    Article  ADS  Google Scholar 

  8. M.E. Gurtin and A.I. Murdoch, A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57 (1975) 291–323; 59, 389–390.

    Article  MATH  MathSciNet  Google Scholar 

  9. M.E. Gurtin and A.I. Murdoch, Surface stresses in solids. J. Solids and Struct. 14 (1978) 431–440.

    Article  MATH  Google Scholar 

  10. H.C. Hamaker, The London–van der Waals attraction between spherical particles. Physica 4 (1937) 1058–1072.

    Article  ADS  Google Scholar 

  11. S. Herminghaus, Dynamical instability of thin liquid films between conducting media. Phys. Rev. Lett. 83 (1999) 2359–2361.

    Article  ADS  Google Scholar 

  12. S. Herminghaus, Harnessing the unstable. Nat. Mater. 2 (2003) 11–12.

    Article  ADS  Google Scholar 

  13. S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, and S. Schlagowski, Spinodal dewetting in liquid crystal and liquid metal films. Science 282 (1998) 916–919.

    Article  ADS  Google Scholar 

  14. A. Hurwitz, Ueber die Bedingungen unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. Mathematische Annalen 46 (1895) 273–284. (On the conditions under which an equation has only roots with negative real parts. Translated by Howard G. Bergmann in Selected Papers on Mathematical Trends in Control Theory. Edited by Richard Bellman and Robert Kalaba. New York: Dover, 1964.)

  15. J.N. Israelachvili and D. Tabor, The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc. R. Soc. Lond., A Math. Phys. Sci. 331 (1972) 19–38.

    ADS  Google Scholar 

  16. A.-M. Liénard and A.H. Chipart, Sur le signe de la partie réelle des racines d'une équation algébrique [On the sign of the real part of the roots of an algebraic equation]. J. Math. Pures Appl. 79 (10, Ser. 6) (1914) 291–346.

    Google Scholar 

  17. H. Lüth, Surfaces and Interfaces of Solid Materials, 3rd edn. Berlin: Springer, 1995.

    Google Scholar 

  18. S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, Electrostatic nanolithography in polymers using atomic force microscopy. Nat. Mater. 2 (2003) 468–471.

    Article  ADS  Google Scholar 

  19. D. Marsh, Elastic constants of polymer-grafted lipid membranes. Biophys. J. 81 (2001) 2154–2162.

    Article  ADS  Google Scholar 

  20. F.C. Matacotta and G. Ottaviani, (eds). Science and Technology of Thin Films. Singapore: World Scientific, 1995.

    Google Scholar 

  21. A.J. Milling, L.R. Hutchings, and R.W. Richards, Capillary wave properties of a spread film of a polybutadience–poly(ethylene oxide) block copolymer: 1. Air–water interface. Langmuir 17 (2001) 5297–5304.

    Article  Google Scholar 

  22. W. Mönch and S. Herminghaus, Elastic instability of rubber films between solid bodies. Europhys. Lett. 53 (2001) 525–531.

    Article  ADS  Google Scholar 

  23. M.D. Morariu, N.E. Voicu, E. Schäffer, Z. Lin, T.P. Russell, and U. Steiner, Hierarchical structure formation and pattern replication induced by an electric field. Nat. Mater. 2 (2003) 48–52.

    Article  ADS  Google Scholar 

  24. R.W. Ogden and D.J. Steigmann, Plane strain dynamics of elastic solids with intrinsic boundary elasticity, with application to surface wave propagation. J. Mech. Phys. Solids 50 (2002) 1869–1896.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. E. Orowan, Surface energy and surface tension in solids and liquids. Proc. R. Soc. Lond., A Math. Phys. Sci. 316 (1970) 473–491.

    ADS  Google Scholar 

  26. M.J. Owen, Surface and interfacial properties. In: J.E. Mark (ed.) Physical Properties of Polymers Handbook, American Institute of Physics Series in Polymers and Complex Materials. American Institute of Physics, Woodbury, New York, 1996 pp. 669–676.

    Google Scholar 

  27. P. Podio-Guidugli, A variational approach to live loadings in finite elasticity. J. Elast. 19 (1988) 25–36.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Podio-Guidugli and G.V. Caffarelli, Surface interaction potentials in elasticity. Arch. Ration. Mech. Anal. 109 (1990) 343–383.

    Article  MATH  Google Scholar 

  29. L.D. Pollack, M.W. Tate, A.C. Finnefrock, C. Kalidas, S. Trotter, N.C. Darnton, L. Lurio, R.H. Austin, C.A. Batt, S.M. Gruner, and S.G.J. Mochrie, Time resolved collapse of a folding protein observed with small angle X-ray scattering. Phys. Rev. Lett. 86 (2001) 4962–4965.

    Article  ADS  Google Scholar 

  30. G. Reiter, Dewetting of thin polymer films. Phys. Rev. Lett. 68 (1992) 75–78.

    Article  ADS  MathSciNet  Google Scholar 

  31. E.J. Routh, A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion. Macmillan, London, 1877.

    Google Scholar 

  32. C.Q. Ru, Surface instability of an elastic thin film interacting with a suspended elastic plate. J. Appl. Mech. 69 (2002) 97–103.

    Article  MATH  ADS  Google Scholar 

  33. C.Q. Ru, Surface instability of a semi-infinite elastic body under surface van der Waals forces. J. Appl. Mech. 71 (2004) 138–140.

    Article  MATH  Google Scholar 

  34. E. Ruckenstein and R.K. Jain, Spontaneous rupture of thin liquid films. J. Chem. Soc., Faraday Trans. 2 Mol. Chem. Phys. 70 (1974) 132–147.

    Article  Google Scholar 

  35. J. Sarkar, V. Shenoy, and A. Sharma, Spontaneous surface roughening induced by surface interactions between two compressible elastic films. Phys Rev. E 67 (2003), Article 031607.

    Google Scholar 

  36. E. Schäffer, T. Thurn-Albrecht, T.P. Russell, and U. Steiner, Electrically induced structure formation and pattern transfer. Nature 403 (2000) 874–877.

    Article  ADS  Google Scholar 

  37. A. Schallamach, How does rubber slide? Wear 17 (1971) 301–312.

    Article  Google Scholar 

  38. A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films. Phys. Rev. Lett. 81 (1998) 3463–3466.

    Article  ADS  Google Scholar 

  39. V. Shenoy and A. Sharma, Pattern formation in a thin solid film with interactions. Phys. Rev. Lett. 86 (2001) 119–122.

    Article  ADS  Google Scholar 

  40. V. Shenoy and A. Sharma, Surface instability and pattern formation in two interacting incompressible elastic films bonded to rigid substrates. Langmuir 18 (2002) 2216–2222.

    Article  Google Scholar 

  41. T.W. Shield, K.S. Kim, and R.T. Shield, The buckling of an elastic layer bonded to an elastic substrate in plane strain. J. Appl. Mech. 61 (1994) 231–235.

    Google Scholar 

  42. R. Shuttleworth, The surface tension of solids. Proc. Phys. Soc. A 63 (1950) 444–457.

    Article  ADS  Google Scholar 

  43. J.B.A.F. Smeulders, J. Mellema, and C. Blom, Changing mechanical properties of lipid vesicle bilayers investigated by linear viscoelastic measurements. Phys. Rev. A 46 (1992) 7708–7722.

    Article  ADS  Google Scholar 

  44. E. Southern and A.G. Thomas, Effect of constraints on the equilibrium swelling of rubber vulcanizates. J. Polym. Sci. Part A, Gen. Pap. 3 (1965) 641–646.

    Article  Google Scholar 

  45. D.J. Steigmann and R.W. Ogden, Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Eng. Sci., A Math. Phys. Eng. Sci. 453 (1997) 853–877.

    Article  MATH  MathSciNet  Google Scholar 

  46. J. Venables, Surface and Thin Film Processes. Cambridge, University Press Cambridge, 2000.

    Google Scholar 

  47. P. Wang, J. Guo, and S.L. Wunder, Surface stress of polydimethylsiloxane networks. J. Polym. Sci. Part B, Polym. Phys. 35 (1997) 2391–2396.

    Article  Google Scholar 

  48. Wolfram Research, Inc. Mathematica, Version 5.0. Wolfram Research, Inc., Champaign, Illinois, 2004.

  49. R. **e, A. Karim, J.F. Douglas, C.C. Han, and R.A. Weiss, Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81 (1998) 1251–1254.

    Article  ADS  Google Scholar 

  50. R. Yerushalmi-Rozen, T. Kerle, and J. Klein, Alternative dewetting pathways of thin liquid films. Science 285 (1999) 1254–1256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliot Fried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, E., Todres, R.E. Mind the Gap: The Shape of the Free Surface of a Rubber-Like Material in Proximity to a Rigid Contactor. J Elasticity 80, 97–151 (2005). https://doi.org/10.1007/s10659-005-9019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-005-9019-z

Key words

Mathematics Subject Classifications (2000)

Navigation