Log in

Contribution of Rosellinia necatrix toxins to avocado white root rot

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

By transversely cutting infected avocado plant stems and using PCR techniques on avocado leaves, two experiments were carried out to determine whether Rosellinia necatrix can invade avocado vascular tissues. We were unable to detect the pathogen in either stems or leaves in either experiment, so we concluded that R. necatrix does not invade the vascular system of the plant. Additionally, the toxins produced by the pathogen were also studied to determine whether such toxins could contribute to the wilting and death of avocado plants infected by R. necatrix, having an effect on avocado leaves, where they can hinder the photosynthetic process. First, we isolated and identified the toxins cytochalasin E and rosnecatrone from filtrates of six R. necatrix isolates. Second, we tried to detect cytochalasin E in sap and leaves from infected avocado plants, and it was not detected at the minimum level of 50 μg/kg in leaves or 25 μg/kg on sap. Finally, we observed changes in fluorescence emitted by the avocado leaf surface (to detect photosynthetic efficiency) after inoculating avocado plants with this toxin. Fluorescence was higher in the leaves of plants immersed in toxin solution after 4 and 8 days, but not after longer periods of time. In this work, we demonstrated that although R. necatrix is not a fungus that invades the vascular system, its toxins are probably involved in the wilting and death of infected avocado plants, decreasing the efficiency of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andolfi, A., Mugnai, L., Luque, J., Surico, G., Cimmino, & Evidente, A. (2011). Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins, 3, 1569–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins, S. D., & Clark, I. M. (2004). Fungal molecular diagnostics: a mini review. Journal of Applied Genetics, 45, 3–15.

    PubMed  Google Scholar 

  • Bilger, W., & Björkman, O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbancy changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173–185.

    Article  CAS  PubMed  Google Scholar 

  • Blomquist, C., Irving, T., Osterbauer, N., & Reeser, P. (2005). Phytophthora hibernalis: a new pathogen on rhododendron and evidence of cross amplification with two PCR detection assays for Phytophthora ramorum. Plant Health Progress. doi:10.1094/PHP-2005-0728-01-HN.

    Google Scholar 

  • Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19, 11–15.

    Google Scholar 

  • Edwards, R. L., Maitland, D. J., & Whalley, A. J. S. (1989). Metabolites of the higher fungi. Part 24. Cytochalasin N, O, P, Q and R. New cytochalasins from the fungus Hypoxylon terricola Mill. Journal of the Chemical Society, Perkin Transactions, 1, 57–65.

    Article  Google Scholar 

  • Edwards, R. L., Maitland, D. J., Scowen, I. J., de Sousa, A. J. T., & Whalley, A. J. S. (2001). Metabolites of the higher fungi. Part 32. Rosnecatrone, a phytotoxic bicyclo (4, 1, 0) hept-3-en-2-one from the fungus Rosellinia necatrix Prill. Journal of the Chemical Society. Perkins Transactions, 1, 537–542.

    Article  Google Scholar 

  • Foissner, I., & Geoffrey, O. W. (2007). Wide-ranging effects of eight cytochalasins and Latrunculin a and B on intracellular motility and actin filament reorganization in Characean Internodal cells. Plant Cell Physiology, 48, 585–597.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, S., & Sztejnberg, A. (1992). Rosellinia. In L. L. Singleton, J. D. Mihail, & C. M. Rush (Eds.), Methods for research on Soilborne Phytopathogenic fungi (pp. 71–73). St. Paul, MN, USA: APS Press.

    Google Scholar 

  • French, E. R. & Hebert, T. T. (1980). Métodos de investigación fitopatológica. Instituto Interamericano de Ciencias Agrícolas.

  • Granum, E., Pérez-Bueno, M. L., Calderón, C. E., Ramos, C., de Vicente, A., Cazorla, F. M., & Barón, M. (2015). Metabolic responses of avocado plants to stress induced by Rosellinia necatrix analysed by fluorescence and thermal imaging. European Journal of Plant Pathology, 142, 625–632.

    Article  CAS  Google Scholar 

  • Grimmer, M. K., Foulkes, M. J., & Pavelei, N. D. (2012). Foliar pathogenesis and plant water relations: a review. Journal of Experimental Botany, 63, 4321–4331.

    Article  CAS  PubMed  Google Scholar 

  • Kanematsu, S., Hayash, T., & Kudo, A. (1997). Isolation of Rosellinia necatrix mutants with impaired cytochalasin E production and its pathogenicity. Annals of the Phytopathological Society of Japan, 63, 425–431.

    Article  CAS  Google Scholar 

  • López, M., Ruano-Rosa, D., López-Herrera, C. J., Monte, E., & Hermosa, R. (2008). Intraspecific diversity within field isolates of Rosellinia necatrix in south-East Spain. European Journal of Plant Pathology, 121, 201–205.

    Article  Google Scholar 

  • López-Herrera, C. J. (1998). Hongos de suelo en el cultivo del aguacate (Persea americana Mill.) del litoral andaluz, V Jornadas Andaluzas de Frutos Tropicales. Junta de Andalucía: Consejería de Agricultura y Pesca.

    Google Scholar 

  • López-Herrera, C. J., & Melero-Vara, J. M. (1992). Diseases of avocado caused by soil fungi in the southern Mediterranean coast of Spain, In Proceedings of the Second World Avocado Congress, 1991 (pp. 119–121). USA: California.

    Google Scholar 

  • López-Herrera, C. J., & Zea-Bonilla, T. (2007). Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado. Crop Protection, 26, 1186–1192.

    Article  Google Scholar 

  • Martínez-Ferri, E., Zumaquero, A., Ariza, M. T., Barceló, A., & Pliego, C. (2015). Non-destructive detection of white root rot disease in avocado rootstocks by leaf chlorophyll fluorescence. Plant Disease, 1, 49–58.

    Google Scholar 

  • Maxwell, K., & Johnson, G. (2000). Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany, 51, 659–668.

    CAS  PubMed  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Ofon, A. U., & Pearce, R. B. (1991). Toxin production by Rosellinia desmazieresii (Berk. & Br.) Sacc. European Journal of Plant Pathology, 21, 57–63.

    Article  Google Scholar 

  • Pliego, C., Kanematsu, S., Ruano-Rosa, D., de Vicente, A., López-Herrera, C., Cazorla, F. M., & Ramos, C. (2009). GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Genetics and Biology, 46, 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Pliego-Alfaro, F. (1988). Development of an in vitro rooting bioassay using juvenile-phase stem cuttings of Persea americana mill. Journal of Horticultural Science, 63, 295–301.

    Article  Google Scholar 

  • Ruano-Rosa, D., Schena, L., Ippolito, A., & López-Herrera, C. J. (2007). Comparison of conventional and molecular methods for the detection of Rosellinia necatrix in avocado orchards in southern Spain. Plant Pathology, 56, 251–256.

    Article  Google Scholar 

  • Ruano-Rosa, D., Del Moral Navarrete, L., & López-Herrera, C. J. (2010). Selection of Trichoderma spp. isolates antagonistic to Rosellinia necatrix. Spanish Journal of Agricultural Research, 8, 1084–1097.

    Article  Google Scholar 

  • Santos, L., Azebedo, J. L., Pereira, J. O., Carneiro, M. L., & Labate, C. A. (2000). Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytology, 147, 609–615.

    Article  Google Scholar 

  • Schena, L., & Ippolito, A. (2003). Rapid and sensitive detection of Rosellinia necatrix in roots and soils by real time scorpion-PCR. Journal of Plant Pathology, 85, 15–25.

    CAS  Google Scholar 

  • Schena, L., Nigro, F., & Ippolito, A. (2002). Identification and detection of Rosellinia necatrix by conventional and real-time scorpion-PCR. European Journal of Plant Pathology, 108, 355–366.

    Article  CAS  Google Scholar 

  • Steel, R. G. D., & Torrie, J. H. (1960). Principles and practice of statistics with special reference to the biological sciences. New York, USA: McGraw Hill Book Co.

    Google Scholar 

  • Sztejnberg, A., & Madar, Z. (1980). Host range of Dematophora necatrix, the cause of white root rot disease in fruit trees. Plant Disease, 64, 662–664.

    Article  Google Scholar 

  • Teixeira de Sousa, A. J., Guillaumin, J. J., Sharples, G. P., & Whalley, A. J. S. (1995). Rosellinia necatrix and white root rot of fruit trees and other plants in Portugal and nearby regions. Mycologist, 9, 31–33.

    Article  Google Scholar 

  • Wang, X. J., Tang, C. L., Chen, J. L., Buchenaeur, H., Zhao, J., Hang, Q. M., Huang, L. L., & Kang, Z. S. (2009). Detection of Puccinia striiformis in latently infected wheat leaves by nested polymerase chain reaction. Journal of Phytopathology, 157, 490–493.

    Article  CAS  Google Scholar 

  • Whalley, A. J. S. (1996). The xylariaceous way of life. Mycological Research, 100, 897–922.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Consejería de Innovación, Ciencia y Empresa Junta de Andalucía grant (Grupo PAIDI AGR-235) and by the Plan Nacional I + D + I from Ministerio de Ciencia e Innovación (AGL 2011-030354-CO2-02). In addition, this research was co-financed by FEDER funds (EU).

The authors thank Prof. Anthony J.S. Whalley (Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, UK) and Prof. Dereck Maitland (Bradford University, UK) for their support to the first author in learning the techniques of toxin purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. López-Herrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjona-Girona, I., Ariza-Fernández, T. & López-Herrera, C.J. Contribution of Rosellinia necatrix toxins to avocado white root rot. Eur J Plant Pathol 148, 109–117 (2017). https://doi.org/10.1007/s10658-016-1074-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1074-8

Keywords

Navigation