Log in

Stereoisomeric profiling of pharmaceuticals ibuprofen and iopromide in wastewater and river water, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Stereoisomeric compositions can provide insights into sources, fate, and ecological risks of contaminants in the environment. In this study, stereoisomeric profiles of ibuprofen and iopromide were investigated in wastewater and receiving surface water of the Pearl River Delta, south China. The enantiomeric fraction (EF) of ibuprofen was 0.108–0.188 and 0.480, whereas the isomer ratio (IR) of iopromide was 1.426–1.673 and 1.737–1.898 in the influent and final effluent, respectively, suggesting stereoselective degradation occurred for both pharmaceuticals during wastewater treatment. Ibuprofen showed enantioselective degradation in the anaerobic, anoxic, and aerobic conditions, whereas iopromide displayed isomer-selective degradation only under the aerobic condition. In the river waters, the EF of ibuprofen was 0.130–0.327 and the IR of iopromide was 1.500–2.531. The results suggested that pharmaceuticals in the mainstream Pearl River were mainly from discharge of treated wastewater, whereas in the tributary rivers and urban canals, direct discharge of untreated wastewater represented a significant contribution. The IR of iopromide can be an applicable and efficient tracer for wastewater discharge in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Batt, A. L., Kim, S., & Aga, D. S. (2006). Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environmental Science and Technology, 40(23), 7367–7373.

    Article  CAS  Google Scholar 

  • Bonato, P. S., Del Lama, M. P. F. M., & de Carvalho, R. (2003). Enantioselective determination of ibuprofen in plasma by high-performance liquid chromatography–electrospray mass spectrometry. Journal of Chromatography B, 796(2), 413–420.

    Article  CAS  Google Scholar 

  • Buser, H. R., Poiger, T., & Müller, M. D. (1999). Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environmental Science and Technology, 33(15), 2529–2535.

    Article  CAS  Google Scholar 

  • Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 39(19), 4797.

    Article  CAS  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives, 107(Suppl 6), 907.

    Article  CAS  Google Scholar 

  • Díaz-Cruz, M. S., & Barceló, D. (2008). Trace organic chemicals contamination in ground water recharge. Chemosphere, 72(3), 333–342.

    Article  Google Scholar 

  • Fono, L. J., & Sedlak, D. L. (2005). Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters. Environmental Science and Technology, 39(23), 9244–9252.

    Article  CAS  Google Scholar 

  • Fontanive, L. (2011). Nanoscale interaction for higher efficiency of contrast media. Ph.D Thesis, Università degli Studi di Trieste.

  • Guangdong Statistics. (2012). Guangdong Statistical Yearbook—2012. http://www.gdstats.gov.cn/tjnj/2012/ml1.htm. Accessed November 10, 2012.

  • Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P., Ingerslev, F., Holten Lützhøft, H., & Jørgensen, S. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere, 36(2), 357–393.

    Article  Google Scholar 

  • Huang, Q., Yu, Y., Tang, C., Zhang, K., Cui, J., & Peng, X. (2011). Occurrence and behavior of non-steroidal anti-inflammatory drugs and lipid regulators in wastewater and urban river water of the Pearl River Delta, South China. Journal of Environmental Monitoring, 13(4), 855–863.

    Article  CAS  Google Scholar 

  • Joss, A., Keller, E., Alder, A. C., Göbel, A., McArdell, C. S., Ternes, T., et al. (2005). Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Research, 39(14), 3139.

    Article  CAS  Google Scholar 

  • Knoche, B., & Blaschke, G. (1994). Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography. Journal of Chromatography A, 666(1), 235–240.

    Article  CAS  Google Scholar 

  • Kolpin, D., Furlong, E., Meyer, M., Thurman, E. M., Zaugg, S., Barber, L., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environmental Science and Technology, 36(1), 1202–1211.

    Article  CAS  Google Scholar 

  • Krause, H., Schweiger, B., Schuhmacher, J., Scholl, S., & Steinfeld, U. (2009). Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water. Chemosphere, 75(2), 163–168.

    Article  CAS  Google Scholar 

  • Lees, P., Taylor, P. M., Landoni, F., Arifah, A., & Waters, C. (2003). Ketoprofen in the cat: Pharmacodynamics and chiral pharmacokinetics. The Veterinary Journal, 165(1), 21–35.

    Article  CAS  Google Scholar 

  • MacLeod, S. L., & Wong, C. S. (2010). Loadings, trends, comparisons, and fate of achiral and chiral pharmaceuticals in wastewaters from urban tertiary and rural aerated lagoon treatments. Water Research, 44(2), 533–544.

    Article  CAS  Google Scholar 

  • Matamoros, V., Hijosa, M., & Bayona, J. M. (2009). Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen. Chemosphere, 75(2), 200–205.

    Article  CAS  Google Scholar 

  • Nakada, N., Tanishima, T., Shinohara, H., Kiri, K., & Takada, H. (2006). Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research, 40(17), 3297–3303.

    Article  CAS  Google Scholar 

  • Nikolai, L. N., McClure, E. L., MacLeod, S. L., & Wong, C. S. (2006). Stereoisomer quantification of the β-blocker drugs atenolol, metoprolol, and propranolol in wastewaters by chiral high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1131(1), 103–109.

    Article  CAS  Google Scholar 

  • Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., & Wang, Z. (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Science of the Total Environment, 397(1), 158–166.

    Article  CAS  Google Scholar 

  • Putschew, A., Wischnack, S., & Jekel, M. (2000). Occurrence of triiodinated X-ray contrast agents in the aquatic environment. Science of the Total Environment, 255(1), 129–134.

    Article  CAS  Google Scholar 

  • Qian, H., Hu, H., Mao, Y., Ma, J., Zhang, A., Liu, W., et al. (2009). Enantioselective phytotoxicity of the herbicide imazethapyr in rice. Chemosphere, 76(7), 885–892.

    Article  CAS  Google Scholar 

  • SeaSolve Software Inc. (2003). PeakFit user’s manual, San Jose, USA.

  • Stamm, C., Alder, A., Fenner, K., Hollender, J., Krauss, M., McArdell, C., et al. (2008). Spatial and temporal patterns of pharmaceuticals in the aquatic environment: A review. Geography Compass, 2(3), 920–955.

    Article  Google Scholar 

  • Stanley, J. K., Ramirez, A. J., Mottaleb, M., Chambliss, C. K., & Brooks, B. W. (2009). Enantiospecific toxicity of the β-blocker propranolol to Daphnia magna and Pimephales promelas. Environmental Toxicology and Chemistry, 25(7), 1780–1786.

    Article  Google Scholar 

  • Steger-Hartmann, T., Länge, R., Schweinfurth, H., Tschampel, M., & Rehmann, I. (2002). Investigations into the environmental fate and effects of iopromide (ultravist), a widely used iodinated X-ray contrast medium. Water Research, 36(1), 266–274.

    Article  CAS  Google Scholar 

  • Ternes, T. A., & Hirsch, R. (2000). Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment. Environmental Science and Technology, 34(13), 2741–2748.

    Article  CAS  Google Scholar 

  • Tixier, C., Singer, H. P., Oellers, S., & Müller, S. R. (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental Science and Technology, 37(6), 1061–1068.

    Article  CAS  Google Scholar 

  • USP XXXII. (2009). The United States Pharmacopeia, 32 ed (p. 2672). Rockville, United States: The United States Pharmacopeial Convention.

  • Winkler, M., Laurence, J. R., & Neu, T. R. (2001). Selective degradation of ibuprofen and clofibric acid in two model river biofilm system. Water Research, 35(13), 3197–3205.

    Article  CAS  Google Scholar 

  • Wong, C. S. (2006). Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. Analytical and Bioanalytical Chemistry, 386(3), 544–558.

    Article  CAS  Google Scholar 

  • Yu, Y., Huang, Q., Wang, Z., Zhang, K., Tang, C., Cui, J., et al. (2011). Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. Journal of Environmental Monitoring, 13(4), 871–878.

    Article  CAS  Google Scholar 

  • Zuccato, E., Calamari, D., Natangelo, M., & Fanelli, R. (2000). Presence of therapeutic drugs in the environment. The lancet, 355(9217), 1789–1790.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NSFC program (No. 41172319) and the Research Program of China (No 2009CB421604). We thank Mr. He Jiazhuo of the SKLOG for his help in LC–MS/MS. The personnel of the studied STP are thanked for their help with sampling. This is contribution from GIGCAS No 1692.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **anzhi Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Huang, Q., Yu, Y. et al. Stereoisomeric profiling of pharmaceuticals ibuprofen and iopromide in wastewater and river water, China. Environ Geochem Health 35, 683–691 (2013). https://doi.org/10.1007/s10653-013-9551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-013-9551-x

Keywords

Navigation