Log in

Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater quality of the Banana Plain (Mbanga, Njombe, Penja—Cameroon) was assessed for its suitability for drinking, domestic, and agricultural uses. A total of 67 groundwater samples were collected from open wells, springs, and boreholes. Samples were analyzed for physicochemical properties, major ions, and dissolved silica. In 95% of groundwater samples, calcium is the dominant cation, while sodium dominates in 5% of the samples. Eighty percent of the samples have HCO3 as major anion, and in 20%, NO3 is the major anion. Main water types in the study area are CaHCO3, CaMgHCO3, CaNaHCO3, and CaNaNO3ClHCO3. CO2-driven weathering of silicate minerals followed by cation exchange seemingly controls largely the concentrations of major ions in the groundwaters of this area. Nitrate, sulfate, and chloride concentrations strongly express the impact of anthropogenic activities (agriculture and domestic activities) on groundwater quality. Sixty-four percent of the waters have nitrate concentrations higher than the drinking water limit. Also limiting groundwater use for potable and domestic purposes are contents of Ca2+, Mg2+ and HCO3 and total hardness (TH) that exceed World Health Organization (WHO) standards. Irrigational suitability of groundwaters in the study area was also evaluated, and results show that all the samples are fit for irrigation. Groundwater quality in the Banana Plain is impeded by natural geology and anthropogenic activities, and proper groundwater management strategies are necessary to protect sustainably this valuable resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams, S., Titusa, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.

    Article  CAS  Google Scholar 

  • Al-Bassam, A. M., & Al-Rumikhani, Y. A. (2003). Integrated hydrochemical method of water quality assessment for irrigation in arid areas: Application to the Jilh aquifer, Saudi Arabia. Journal of African Earth Sciences, 36, 345–356.

    Article  CAS  Google Scholar 

  • Alemayehu, T., Dietzel, M., & Leis, A. (2010). Geochemical evolution of groundwater quality in shallow and deep wells of volcanic aquifer in Axum, Ethiopia. In Proceeding of XXXVIII IAH Congress, Krakow-Poland. ISSN 0208-6336.

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • APHA-AWWA-WPCF. (1995). Standard methods for the examination of water and waste water (19th ed.). New York: American Public Health Association.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1999). Geochemistry, groundwater and pollution. The Netherlands: Balkema.

    Google Scholar 

  • Back, W. (1966). Hydrochemical facies and groundwater flow pattern in northern part of Atlantic Coastal Plain. US Geological Survey Professional Paper 498A.

  • Berner, E. K., & Berner, R. A. (1987). The global water cycle: Geochemistry and environment. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Davis, S. N., & DeWiest, R. J. M. (1966). Hydrogeology. New York: Wiley.

    Google Scholar 

  • Delvaux, B. (1988). Constituants et propietes de surface des sols derives de pyroclastics genetiques de leur fertilite. These. Belgium: Universite Catholique de Louvain.

  • Delvaux, B., Herbillion, A. J., & Vielvoye, L. (1989). Characterization of a weathering sequence of volcanic ash in Cameroon, taxonomic, mineralogical and agronomic implications. Geoderma, 45, 375–388.

    Article  Google Scholar 

  • Demlie, M., Wohnlich, S., Wisotzky, F., & Gizaw, B. (2007). Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, central Ethiopia. Journal of Hydrogeology, 15, 1169–1181.

    Article  CAS  Google Scholar 

  • Deutsch, W. J. (1997). Groundwater geochemistry: Fundamentals and application to contamination. Boca Raton, Florida: CRC.

  • Drever, J. J. (1988). The geochemistry of natural waters. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Driessen, P. M., & Dudal, R. (1991). The major soils of the world. Lecture notes on their geography, formation, properties and land use. Waganigen Agriculture University and Catholic University, Leuven, Paper No. 210.

  • Dumort, J. C. (1968). Carte géologique de reconnaissance à 1/500.000 avec notice explicative. Feuille Douala-Ouest Yaoundé: Dir. Mines et Géo. du Cameroun.

    Google Scholar 

  • Durfor, C. N., & Becker, E. (1964). Public water supply of the 100 largest cities in US.US Geological Survey Water Supply Paper 1812,364.

  • Durvey, V. S., Sharma, L. L., Saini, V. P., & Sharma, B. K. (1991). Handbook on the methodology of water quality assessment. India: Rajasthan Agriculture University.

    Google Scholar 

  • Eaton, E. M. (1950). Significance in carbonate in irrigation water. Soil Science, 69, 123–133.

    Article  CAS  Google Scholar 

  • Elhatip, H., Afsin, M., Kuscu, L., Dirik, K., Kurmac, A., & Kavurmac, M. (2003). Influences of human activities and agriculture on groundwater quality of Kayseri–Incesu–Dokuzpınar springs, central Anatolian part of Turkey. Environmental Geology, 44, 490–494.

    Article  CAS  Google Scholar 

  • Endeley, R. E., Ayonghe, S. N., & Tchuenteu, F. (2001). A preliminary hydrochemical baseline study of water sources around Mount Cameroon. Journal of the Cameroon Academy of Sciences, 1(3), 161–168.

    Google Scholar 

  • Environmental Protection Agency (EPA). (2009). National primary/secondary drinking regulations. EPA 816-F-09-004. 6 pp. /http://www.epa.gov/safewater/contaminants.

  • FAO. (1983). Guidelines: Land evaluation for rain fed agriculture. Rome: FAO.

    Google Scholar 

  • Faure, G. (1988). Principles and applications of geochemistry. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (p. 604). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Garg, V. K., Suthar, S., Singh, S., Sheoran, A., Garima, M., & Jain, S. (2009). Drinking water quality of southwestern Haryana India: Assessing human health risks associated with hydrochemistry. Environmental Geology. doi:10.1007/s00254-008-1636-y.

  • Garrels, R. M., & Mackenzie, F. T. (1967). Origin of the chemical composition of some springs and lakes. In R. F. Gould (Ed.), Equilibrium concepts in natural water systems. Washington, DC: American Chemical Society.

    Google Scholar 

  • GEOBASE. (2008). Etude evaluation de la reserve de pouzzolane de la carriere Cimencam de Djoungo Arrondissement de Mombo, Departement du Moungo. Douala-Cameroun: GEOBASE SARL, Ingenieurs, Conseils.

    Google Scholar 

  • HA, A. P. (1989). Standard methods for examination of water and wastewater (17th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Hem, J. D. (1989). The study and interpretation of the chemical characteristics of natural waters (3rd ed.). US Geological Survey.

  • Herczeg, A. (2001). Can major ion chemistry be used estimate groundwater residence time in basaltic aquifer? In R. Cidu (Ed.), Proceeding of 9th international. Symposium on water–rock interaction (pp. 529–532). Rotterdam: A.A.Balkema.

    Google Scholar 

  • HO, W. (1993). Guideline for drinking water quality: Volume 1. Recommendations: (2nd ed.). Geneva: World Health Organization.

    Google Scholar 

  • Karanth, K. R. (1987). Groundwater assessment, development and management. New Delhi: Tata-McGraw-Hill.

    Google Scholar 

  • Kling, W. G., Evans, W. C., & Tuttle, M. L. (1989). The evolution of the thermal water structure and water chemistry in Lake Nyos. Journal Volcanology Geothermal Research, 39, 151–165.

    Article  CAS  Google Scholar 

  • Kumar, S. C., & Anderson, H. W. (1993). Nitrogen isotopes as indicators of nitrate sources in Minnesota sand plane aquifers. Groundwater, 31, 260–271.

    Google Scholar 

  • Kusakabe, M., Oshumi, T., & Aramaki, S. (1989). The Lake Nyos gas disaster: Chemical and isotopic evidence in waters and dissolved gases from three Cameroonian crater lakes, Nyos, Monoun and Wum. Journal Volcanology Geothermal Research, 39, 167–185.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. New Jersey: Prentice-Hall.

    Google Scholar 

  • Majumdar, D., & Gupta, N. (2000). Nitrate pollution of groundwater and associated human health disorders. Indian Journal of Environmental Health, 42, 28–39.

    CAS  Google Scholar 

  • Martin, D., Sieffermann, G., & Vallerie, M. (1966). Sols rouges du Nord Cameroun. Paris: 0. R. S. T. 0. M.

  • Mazor, E. (2004). Chemical and isotopic groundwater hydrology. New York: Marcel Drekker Inc.

    Google Scholar 

  • Mbanga Rural Council. (2008). Monographie de la Commune de Mbanga. Mbanga: Mbanga Rural Council.

    Google Scholar 

  • Mbotake, T. I. (2006). A preliminary study of sources of arsenic contamination in southwest Cameroon. Journal of Environmental Hydrology, 14(25), 1–11.

    Google Scholar 

  • Nagarajan, R., Rajmohan, N., Mahendran, U., & Senthamilkumar, S. (2009). Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environmental Monitoring and Assessment. doi:10.1007/s10661-009-1279-9.

  • National Metrological Service. (2008). Metrological data for Douala. Douala, Cameroon: National Metrological Service.

  • Njitchoua, R., & Ngounou Ngatcha, B. (1997). Hydrogeochemistry and environmental isotope investigations of the North Diamare Plain, northern Cameroon. Journal of African Earth Sciences, 25(2), 307–316.

    Google Scholar 

  • Njome, M. S., & Suh, C. E. (2005). Tectonic evolution of the Tombel graben basement, southwestern Cameroon. Episodes, 28(1), 37–41.

    Google Scholar 

  • Njome, M. S., Suh, C. E., & Ghogomu, R. T. (2003). A microstructural approach to interpreting the structural setting of the Tombel graben, south western Cameroon. GeoActa, 2, 181–200.

    Google Scholar 

  • Nkouathio, D. G., Ménard, J. J., Wandji, P., & Bardintzeff, J. M. (2002). The Tombel graben (West Cameroon): a recent monogenetic volcanic field of the Cameroon Line. Journal of African Earth Sciences, 35, 285–300.

    Article  CAS  Google Scholar 

  • Nono, A., & Likeng, J. D. H. (2008). Influences of lithology and geological structures on groundwater in volcanic areas of Cameroon: Cameroon Volcanic Line (CVL) and Adamawa plateau. In Proceedings of the international symposium in hydrogeology-Djibouti. Hydrogeology in Volcanic Rocks.

  • Obenesaw, P. O., Njung, T., & Fongwei, G. (1997). Geophysical reconnaissance survey for an underground potable water source at Pamol Estate Lobe. Ekondo Titi: PAMOL.

    Google Scholar 

  • Opfergelt, S. (2008). Silicon cycle in the soil–plant system: biogeochemical tracing using Si isotopes. Thesis. Belgium: Catholic University of Louvain.

  • Oyebog, S. A. (2010). Bacteriological and physicochemical analysis of some bottled water in Cameroon. MSc Thesis. Department of Geology and Environmental Science, University of Buea.

  • Paces, T. (1973). Steady state kinetics and equilibrium between groundwater and granite rock. Geochimica et Cosmochimica Acta, 37, 2641–2663.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). PHREEQC for windows version 1.4.07. A hydrogeochemical transport model. US Geological Survey Software.

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. American Geophysical Union Transcript, 25, 914–923.

    Google Scholar 

  • Rajmohan, N., Elango, L., & Elampooranan, T. (1997). Groundwater quality in Nagai Quaid-E-Milleth District and Karaikal, South India. Indian Water Resources Society, 17(3–4), 25–30.

    Google Scholar 

  • Rajmohan, N., Elango, L., Ramachandran, S., & Natarajan, M. (2000). Major ion correlation in groundwater of Kancheepuram region, South India. Indian Journal of Environmental Protection, 20(3), 188–193.

    Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington: US Department of Agriculture.

    Google Scholar 

  • Rose, T. P., Davisson, M. L., & Criss, R. E. (1996). Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California. Journal of Hydrology, 179, 207–236.

    Article  CAS  Google Scholar 

  • Sama-Lang, P. (2004). Soil and water conservation in banana production between Mount Cameroon and Bambutus Mountain (Paper No. 210). In 13th International Soil Conservation Organization Conference. Brisbane: ISCO.

  • Sarin, M. M., Krishnaswami, S., Killi, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga–Brahmaputra River basin system: weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53, 997–1009.

    Article  CAS  Google Scholar 

  • Sieffermann, G. (1973). Rapport pédologique du Mungo (Secteur Loum-Manjo) (4 feuilles au 1/2000). Yaoundé: I.R.CAM.

  • Stallard, R. F., & Edmond, J. N. (1983). Geochemistry of the Amazon-II. The influence and the geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88(14), 9671–9688.

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2002). Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh. Indian Journal of Environmental Geology, 41, 552–562.

    Google Scholar 

  • Suh, C. E., Sparks, R. S. J., Fitton, J. G., Ayonghe, S. N., Annen, C., & Nana, R. (2003). The 1999 and 2000 eruptions of Mount Cameroon: Eruption behaviour and petrochemistry of lava. Bulletin of Volcanology, 65, 267–281.

    Article  Google Scholar 

  • Tanyileke, G. Z., Kusakabe, M., & Evans, W. S. (1996). Chemical and isotopic characteristics of fluids along the Cameroon Volcanic Line, Cameroon. Journal of African Earth Sciences, 22(4), 433–441.

    Article  CAS  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology. New York: Wiley.

  • UNICEF. (2007). Predicting the global extent of arsenic pollution of groundwater and its potential impact on human health. http://www.physics.harvard.edu/~wilson/arsenic/references/Ravenscroft_Prediction.pdf.

  • United States Salinity Laboratory. (1954). Diagnosis and improvement of saline and alkaline soils. Washington: US Department of Agriculture.

    Google Scholar 

  • WATER SURVEY. (2007). Etude hydrogeologique pour localization d’un aquifer a Mbanga, Mungo Division-Cameroon. Douala, Cameroon: WATER SURVEY Consultancy.

  • WHO. (1997). Guideline for drinking water quality. Health criteria and other supporting information. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2001). Water health and human rights, world water day. http://www.worldwaterday.org/thematic/hmnrights.html#n4. Accessed 20 May 2010.

  • WHO. (2004). Guidelines for drinking water quality. Geneva: World Health Organization.

  • Wilcox, L. V. (1958). The quality of water for irrigation. US Department of Agriculture.

Download references

Acknowledgments

This write-up constitutes part of data generated during the PhD study of the corresponding author, who is supported by Monbukagakusho Scholarship from MEXT (The Japanese Ministry of Education, Science, Sports and Culture). Material support was also provided by Grant-in-aid for scientific research No.21-606 from SASAGAWA Foundation, Japan (Japan Science Society). Thanks are due to the anonymous referees of the journal, who helped immensely in rewriting the paper in terms of content and language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Ako Ako.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ako, A.A., Shimada, J., Hosono, T. et al. Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line. Environ Geochem Health 33, 559–575 (2011). https://doi.org/10.1007/s10653-010-9371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9371-1

Keywords

Navigation