Log in

Unusual reef fish biomass and functional richness at Malpelo, a remote island in the Tropical Eastern Pacific

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Fish assemblages can vary across temporal and spatial scales due to changes in habitat structure and the influence of local factors such as wave exposure, depth and anthropogenic influence. This study presents a description of species richness, functional richness, density and biomass of fish assemblages of Malpelo Island, a Marine Protected Area located in the Tropical Eastern Pacific (TEP) region and considered a World Heritage site. Underwater visual censuses (n = 103) from two years and a local checklist were used to characterize the reef fish assemblage of Malpelo Island. Our results show a numerical dominance, during both sampling years, by the planktivore species Chromis atrilobata and Apogon atradorsatus, which are regional TEP endemic species. Among the most striking results found were the high biomass values (706.2 g/m2 ± 73.2 in 2010 and 879 g/m2 ± 116.2 in 2015) of large-bodied TEP endemic piscivorous species and the high functional diversity represented mainly by vulnerable species. The dominance in density and biomass of regional endemic species exemplifies the high endemism level within the TEP. High levels of fish biomass and functional richness suggest that Malpelo is one of the most pristine and vulnerable sites within the TEP region. Thus, Malpelo island represents a baseline for untouched assemblages in this marine province, as well as a priority area for conservation at the national and international level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aburto-Oropeza O, Erisman B, Galland GR et al (2011) Large recovery of fish biomass in a no-take marine reserve. PLoS One 6:e23601. doi:10.1371/journal.pone.0023601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar-Medrano R, Calderón-Aguilera LE (2015) Redundancy and diversity of functional reef fish groups of the Mexican Eastern Pacific. Mar Ecol 37:119–133. doi:10.1111/maec.12253

    Article  Google Scholar 

  • Alvarez-Filip L, Reyes-Bonilla H (2006) Comparison of community structure and functional diversity of fishes at Cabo Pulmon coral reef, western Mexico between 1987 and 2003. Proc 10th Int Coral Symp 216–225

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.tb00081.x

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMES-E, Plymounth

    Google Scholar 

  • Bender MG, Leprieur F, Mouillot D et al (2016) Isolation drives taxonomic and functional nestedness in tropical reef fish faunas. Ecography. doi:10.1111/ecog.02293

  • Bessudo S, Soler GA, Klimley AP et al (2011) Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the eastern tropical Pacific. Environ Biol Fish 91:165–176. doi:10.1007/s10641-011-9769-3

    Article  Google Scholar 

  • Chasqui LV, Zapata FA (2007) Tamaño y composición de dos formaciones coralinas del SFF. Bol Invest Mar Cost 8:387

    Google Scholar 

  • Chasqui LV, Gil-Agudelo DL, Nieto R (2011) Endemic shallow reef fishes from Malpelo Island: abundance and distribution. Bol Invest Mar Cost 40:107–116

    Google Scholar 

  • Cole RG, Creese RG, Grace RV et al (1992) Abundance patterns of subtidal benthic invertebrates and fishes at the Kermadec Islands. Mar Ecol Prog Ser 82:207–218. doi:10.3354/meps082207

    Article  Google Scholar 

  • Connolly SR, Hughes TP, Bellwood DR, Karlson RH (2005) Community structure of corals and reef fishes at multiple scales. Science 309:1363–1365. doi:10.1126/science.1113281

    Article  CAS  PubMed  Google Scholar 

  • Dawson MN (2015) Island and island-like marine environments. Glob Ecol Biogeogr :1–16. doi: 10.1111/geb.12314

  • DeMartini E, Friedlander A (2004) Spatial patterns of endemism in shallow-water reef fish populations of the northwestern Hawaiian islands. Mar Ecol Prog Ser 271:281–296. doi:10.3354/meps271281

    Article  Google Scholar 

  • Dominici-Arosemena A, Wolff M (2006) Reef fish community structure in the tropical eastern Pacific (Panamá): living on a relatively stable rocky reef environment. Helgol Mar Res 60:287–305. doi:10.1007/s10152-006-0045-4

    Article  Google Scholar 

  • Edgar GJ, Banks S, Fariña JM et al (2004) Regional biogeography of shallow reef fish and macro-inver- tebrate communities in the Galapagos archipelago. J Biogeogr 31:1107–1124

    Article  Google Scholar 

  • Edgar GJ, Banks SA, Bessudo S et al (2011) Variation in reef fish and invertebrate communities with level of protection from fishing across the eastern tropical Pacific seascape. Glob Ecol Biogeogr 20:730–743. doi:10.1111/j.1466-8238.2010.00642.x

    Article  Google Scholar 

  • Findley LT (1974) A new species of goby from Malpelo Island (Teleostei: Gobiidae: Chriolepis). Smithson Contrib Zool 176:94–98

  • Floeter SR, Krohling W, Gasparini JL et al (2007) Reef fish community structure on coastal islands of the southeastern Brazil: the influence of exposure and benthic cover. Environ Biol Fish 78:147–160. doi:10.1007/s10641-006-9084-6

    Article  Google Scholar 

  • Friedlander AM, DeMartini EE (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Mar Ecol Prog Ser 230:253–264. doi:10.3354/meps230253

    Article  Google Scholar 

  • Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Biol Ecol 224:1–30. doi:10.1016/S0022-0981(97)00164-0

    Article  Google Scholar 

  • Friedlander AM, Zgliczynski BJ, Ballesteros E et al (2012) The shallow-water fish assemblage of Isla del coco National Park, Costa Rica: structure and patterns in an isolated, predator-dominated ecosystem. Rev Biol Trop 60:321–338

    Google Scholar 

  • Friedlander AM, Ballesteros E, Beets J et al (2013) Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile. Aquat Conserv Mar Freshwat Ecosyst 23:515–531. doi:10.1002/aqc.2333

    Article  Google Scholar 

  • Friedlander AM, Ballesteros E, Caselle JE et al (2016) Marine biodiversity in Juan Fernández and Desventuradas Islands, Chile: global endemism hotspots. PLoS One 11:e0145059. doi:10.1371/journal.pone.0145059

    Article  PubMed  PubMed Central  Google Scholar 

  • Froese R, Pauly D (2016) FishBase. World wide web electronic publication. Available: www.fishbase.org. Accessed 13 Jul 2016

  • Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance-range size relationships: an appraisal of mechanisms. J Anim Ecol 66(4):579–601. doi:10.2307/5951

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Gove JM, McManus MA, Neuheimer AB et al (2016) Near-island biological hotspots in barren ocean basins. Nat Commun 7:1–34. doi:10.1038/ncomms10581

    Article  Google Scholar 

  • Hachich NF, Bonsall MB, Arraut EM et al (2015) Island biogeography: patterns of marine shallow-water organisms in the Atlantic Ocean. J Biogeogr 45:1871–1882. doi:10.1111/jbi.12560

    Article  Google Scholar 

  • Hothorn T, Bretz F, Peter W (2008) Simultaneous inference in general parametric models. Biom J 20:346–363

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography, university. University Press, Princeton

    Google Scholar 

  • Jones GP, Syms C (1998) Disturbance, habitat structure and the ecology of fishes on coral reefs. Aust J Ecol 23:287–297. doi:10.1111/j.1442-9993.1998.tb00733.x

    Article  Google Scholar 

  • Kulbicki M, Parravicini V, Bellwood DR et al (2013) Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS One 8:e81847. doi:10.1371/journal.pone.0081847

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulbicki M, Parravicini, V, Mouillot D. (2015) Patterns and processes in reef fish body size. In: Mora C (ed), Ecology of Fishes on Coral Reefs, 3rd edn. Cambridge University Press, pp 374–379

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Locey KJ, White EP (2013) How species richness and total abundance constrain the distribution of abundance. Ecol Lett 16:1177–1185. doi:10.1111/ele.12154

    Article  PubMed  Google Scholar 

  • Longo GO, Morais RA, Martins CDL et al (2015) Between-habitat variation of benthic cover, reef fish assemblage and feeding pressure on the benthos at the only atoll in South Atlantic: Rocas atoll, NE Brazil. PLoS One 10:e0127176. doi:10.1371/journal.pone.0127176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luiz OJ, Madin JS, Robertson DR et al (2012) Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc Biol Sci 279:1033–1040. doi:10.1098/rspb.2011.1525

    Article  PubMed  Google Scholar 

  • Luiz OJ, Mendes TC, Barneche DR et al (2015) Community structure of reef fishes on a remote oceanic island (St Peter and St Paul’s Archipelago, equatorial Atlantic): the relative influence of abiotic and biotic variables. Mar Freshw Res 66:739–749

    Article  CAS  Google Scholar 

  • McClanahan TR, Branch GM (2008) Food webs and the dynamics of marine reefs. University Press, Oxford

    Book  Google Scholar 

  • McCosker JE, Rosenblatt RH (1974) Fishes collected at Malpelo Island. Smithson Contrib Zool 176:91–93

  • McGill BJ, Etienne RS, Gray JS et al (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015. doi:10.1111/j.1461-0248.2007.01094.x

    Article  PubMed  Google Scholar 

  • Mora C, Robertson DR (2005a) Factors sha** the range-size frequency distribution of the endemic fish fauna of the tropical eastern Pacific. J Biogeogr 32:277–286. doi:10.1111/j.1365-2699.2004.01155.x

    Article  Google Scholar 

  • Mora C, Robertson DR (2005b) Causes of latitudinal gradients in species richness: a test with fishes of the tropical eastern Pacific. Ecology 89:1771–1782. doi:10.1890/04-0883

    Article  Google Scholar 

  • Mora C, Chittaro PM, Sale PF et al (2003) Patterns and processes in reef fish diversity. Nature 421:933–936. doi:10.1038/nature01393

    Article  CAS  PubMed  Google Scholar 

  • Mora C, Aburto-Oropeza O, Ayala-Bocos A et al (2011) Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol 9:e1000606. doi:10.1371/journal.pbio.1000606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouillot D, Bellwood DR, Baraloto C et al (2013) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11:e1001569. doi:10.1371/journal.pbio.1001569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouillot D, Villeger S, Parravicini V et al (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc Natl Acad Sci 111(38):13757–13762. doi:10.1073/pnas.1317625111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, et al. (2015) vegan: Community Ecology Package. R package version 2.3–4. https://CRAN.R-project.org/package=vegan

  • Parravicini V, Kulbicki M, Bellwood DR et al (2013) Global patterns and predictors of tropical reef fish species richness. Ecography (Cop) 36:1254–1262. doi:10.1111/j.1600-0587.2013.00291.x

    Article  Google Scholar 

  • Pinheiro HT, Ferreira CEL, Joyeux JC et al (2011) Reef fish structure and distribution in a South-Western Atlantic Ocean tropical island. J Fish Biol 79:1984–2006. doi:10.1111/j.1095-8649.2011.03138.x

    Article  CAS  PubMed  Google Scholar 

  • Quimbayo JP, Zapata FA, Floeter SR et al (2014) Reef fish foraging associations at Malpelo Island, Colombia (Tropical Eastern Pacific). Bol Invest Mar Cost 43:183–193

    Google Scholar 

  • Quimbayo JP, Dias MS, Schlickmann OC, Mendes TC (2016) Fish cleaning interactions on a remote island from the tropical eastern Pacific. Mar Biodivers. doi:10.1007/s12526-016-0493-2

    Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. Version 3.2.4 R Foundation for Statistical Computing, Vienna, Austria

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15. doi:10.1046/j.1461-0248.2003.00554.x

    Article  Google Scholar 

  • Ricklefs RE (2006) Evolutionary diversification and the origin of the diversity-environment relationship. Ecology 87:S3–13

    Article  PubMed  Google Scholar 

  • Robertson DR, Allen GR (2016) Shore fishes of the Tropical Eastern Pacific online information system. Version 1.0. http://biogeodb.stri.si.edu/sftep. Accessed 13 Jul 2016

  • Robertson DR, Cramer KL (2009) Shore fishes and biogeographic subdivisions of the tropical eastern Pacific. Mar Ecol Prog Ser 380:1–17. doi:10.3354/meps07925

    Article  Google Scholar 

  • Rodríguez-Rubio E, Schneider W (2003) On the seasonal circulation within the Panama bight derived from satellite observations of wind, altimetry and sea surface temperature. Geophys Res Lett 30:63–67. doi:10.1029/2002GL016794

    Article  Google Scholar 

  • Rodríguez-Rubio E, Ortiz-Gálviz J, Rueda-Bayona J (2007) Aspectos Oceanográficos, Capitulo II. DIMAR-CCCP, UAESPNN-DTSO 2007 St. Fauna y Flora Malpelo Descub. en marcha. Dir. Gen. Marítima-Centro Control Contam. del Pacífico y Unidad Adm. Espec. del Sist. Parques Nac. Nat. T. Bogotá, pp 29–44

  • Rubio FA, Suarez A, Estupiñan F et al (1992) Los Recurso ictiologicos de la Isla Malpelo: Una revisión de su conocimiento y nuevos reportes para la ictiofauna de la isla. Sem Nac de Cie y Tec del Mar 2:642–657

    Google Scholar 

  • Sandin SA, Smith JE, Demartini EE et al (2008) Baselines and degradation of coral reefs in the northern Line Islands. PLoS One 3(2):e1548. doi:10.1371/journal.pone.0001548

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz AL, Malcolm HA, Bucher DJ et al (2014) Depth and medium-scale spatial processes influence fish assemblage structure of unconsolidated habitats in a subtropical Marine Park. PLoS One. doi:10.1371/journal.pone.0096798

    Google Scholar 

  • Soler GA, Bessudo S, Guzmán A (2013) Long Term Monitoring of Pelagic Fishes at Malpelo Island, Colombia. Lat Am J Conserv :28–37

  • Stuart-Smith RD, Bates AE, Lefcheck JS et al (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501:539–542. doi:10.1038/nature12529

    Article  CAS  PubMed  Google Scholar 

  • Trebilco R, Baum JK, Salomon AK, Dulvy NK (2013) Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol Evol 28:423–431. doi:10.1016/j.tree.2013.03.008

    Article  PubMed  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Ward-Paige C, Flemming JM, Lotze HK (2010) Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions. PLoS One 5(7):e11722. doi:10.1371/journal.pone.0011722

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams ID, Baum JK, Heenan A et al (2015) Human, oceanographic and habitat drivers of central and western Pacific coral reef fish assemblages. PLoS One 10:e0120516. doi:10.1371/journal.pone.0120516

    Article  PubMed  PubMed Central  Google Scholar 

  • Zapata FA, Robertson DR (2007) How many species of shore fishes are there in the tropical eastern Pacific? J Biogeogr 34:38–51. doi:10.1111/j.1365-2699.2006.01586.x

    Article  Google Scholar 

  • Zapata FA, Vargas-Ángel B (2003) Corals and coral reefs of the Pacific coast of Colombia. Lat. Am. Coral reefs, Cortés. J. Elsevier Science B. V, Amsterdam, p. 495

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ et al (2009) Statistics for biology and health mixed effects models and extensions in ecology with R. Springer, Netherlands

    Book  Google Scholar 

Download references

Acknowledgements

This study was carried out under the “Eastern Tropical Pacific Seascape” initiative. We thank C.G. Muñoz, D. Lozano-Cortes, J. Tavera for help in the field, D. Diaz-Cánova, M. Bender, A.B. Anderson, A.N. Orians, M.S. Dias, Daura-Jorge, F, Hernandez-Medina M. Joyeux J.C. and two anonymous reviewers for all suggestions on earlier versions of this manuscript. J.P.Q. thanks CAPES (Brazil) for financial support. We also acknowledge Fundación Malpelo y Otros Ecosistemas Marinos for logistic organization, Colombian National Natural Parks for permits, Conservation International, UNESCO, The Walton Family Foundation and Fondo para la Acción Ambiental y la Niñez for the opportunity and funds for research at Malpelo’s Sanctuary of Flora and Fauna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Quimbayo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Comparison between the two sampling years 2010 and 2015. (a) Species richness, (b) functional richness, (c) density and (d) biomass. Each color represents a different year (dark blue for 2010 and light blue for 2015). Boxplots show medians (black line), mean (red diamond), upper and lower quartiles, and 95% confidence intervals. Red lines in A and B, represent the standardized number of surveys. Each point represents an underwater visual census (GIF 128 kb)

High resolution image (TIFF 4.79 mb)

Fig. S2

Comparison of the density (a) and biomass (b) between endemic species and non-endemic species. Only families that have endemic species were considered for this comparison. Boxplots show medians (black line), upper and lower quartiles, and 95% confidence intervals. Each point represents an UVC (GIF 88.2 kb)

High resolution image (TIFF 4.81 mb)

Fig. S3

Comparison of the biomass from Malpelo Island with others oceanic islands considered as pristine. Each color represents a different trophic group of fish assemblage (GIF 94.7 kb)

High resolution image (TIFF 4.80 mb)

Table S1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quimbayo, J.P., Mendes, T.C., Kulbicki, M. et al. Unusual reef fish biomass and functional richness at Malpelo, a remote island in the Tropical Eastern Pacific. Environ Biol Fish 100, 149–162 (2017). https://doi.org/10.1007/s10641-016-0557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-016-0557-y

Keywords

Navigation