Log in

Epidermal growth factor-like domain multiple 6 (EGFL6) promotes the migration and invasion of gastric cancer cells by inducing epithelial-mesenchymal transition

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Epidermal growth factor-like domain multiple 6 (EGFL6) is implicated in tumor growth, metastasis and angiogenesis, and its ectopic alteration has been detected in aggressive malignancies. However, the pathophysiologic roles and molecular mechanisms of EGFL6 in gastric cancer (GC) remain to be elucidated. In this study, we investigated EGFL6 expression in GC cell lines and tissues using western blotting and immunohistochemistry. We found that EGFL6 was elevated expression in GC cell lines and tissues. The high expression of EGFL6 significantly was correlated with histological grade, depth of invasion, lymph node involvement, distant metastasis and TNM stage in GC and predicted poorer prognosis, and it could act an independent prognostic factor for GC patients. EGFL6 enhanced the proliferation, migration and invasion of GC cells. In addition, we identified the possible molecular mechanisms of EGFL6-involved epithelial-mesenchymal transition (EMT). EGFL6 regulated EMT process and induced metastasis partly through FAK/PI3K/AKT/mTOR, Notch and MAPK signaling pathways. In conclusion, EGFL6 confers an oncogenic function in GC progression and may be proposed as a potential therapeutic target for GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Lin MT, Song HJ, Ding XY (2018) Long non-coding RNAs involved in metastasis of gastric cancer. World J Gastroenterol 24(33):3724–3737. https://doi.org/10.3748/wjg.v24.i33.3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tanabe S, Ishido K, Higuchi K, Sasaki T, Katada C, Azuma M, Naruke A, Kim M, Koizumi W (2014) Long-term outcomes of endoscopic submucosal dissection for early gastric cancer: a retrospective comparison with conventional endoscopic resection in a single center. Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association 17(1):130–136. https://doi.org/10.1007/s10120-013-0241-2

    Article  Google Scholar 

  4. Li J, Xu L, Run ZC, Feng W, Liu W, Zhang PJ, Li Z (2018) Multiple cytokine profiling in serum for early detection of gastric cancer. World J Gastroenterol 24(21):2269–2278. https://doi.org/10.3748/wjg.v24.i21.2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamamoto M, Kurokawa Y, Miyazaki Y, Makino T, Takahashi T, Yamasaki M, Nakajima K, Takiguchi S, Mori M, Doki Y (2016) Usefulness of preoperative plasma fibrinogen versus other prognostic markers for predicting gastric Cancer recurrence. World J Surg 40(8):1904–1909. https://doi.org/10.1007/s00268-016-3474-5

    Article  PubMed  Google Scholar 

  6. Singh B, Carpenter G, Coffey RJ (2016) EGF receptor ligands: recent advances. F1000Research 5. Doi:https://doi.org/10.12688/f1000research.9025.1

  7. Yeung G, Mulero JJ, Berntsen RP, Loeb DB, Drmanac R, Ford JE (1999) Cloning of a novel epidermal growth factor repeat containing gene EGFL6: expressed in tumor and fetal tissues. Genomics 62(2):304–307. https://doi.org/10.1006/geno.1999.6011

    Article  CAS  PubMed  Google Scholar 

  8. Bai S, Ingram P, Chen YC, Deng N, Pearson A, Niknafs YS, O'Hayer P, Wang Y, Zhang ZY, Boscolo E, Bischoff J, Yoon E, Buckanovich RJ (2016) EGFL6 regulates the asymmetric division, maintenance, and metastasis of ALDH+ ovarian Cancer cells. Cancer Res 76(21):6396–6409. https://doi.org/10.1158/0008-5472.CAN-16-0225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee SH, Jeong EG, Soung YH, Lee JW, Yoo NJ, Lee SH (2008) Absence of GNAS and EGFL6 mutations in common human cancers. Pathology 40(1):95–97. https://doi.org/10.1080/00313020701716375

    Article  CAS  PubMed  Google Scholar 

  10. Sanderson MP, Dempsey PJ, Dunbar AJ (2006) Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 24(2):121–136. https://doi.org/10.1080/08977190600634373

    Article  CAS  PubMed  Google Scholar 

  11. Chang CC, Sung WW, Hsu HT, Yeh CM, Lee CH, Chen YL, Liu TC, Yeh KT (2018) Validation of EGFL6 expression as a prognostic marker in patients with lung adenocarcinoma in Taiwan: a retrospective study. BMJ Open 8(6):e021385. https://doi.org/10.1136/bmjopen-2017-021385

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chuang CY, Chen MK, Hsieh MJ, Yeh CM, Lin CW, Yang WE, Yang SF, Chou YE (2017) High level of plasma EGFL6 is associated with Clinicopathological characteristics in patients with Oral squamous cell carcinoma. Int J Med Sci 14(5):419–424. https://doi.org/10.7150/ijms.18555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang QW, Zhang XT, Tang CT, Lin XL, Ge ZZ, Li XB (2019) EGFL6 promotes cell proliferation in colorectal cancer via regulation of the WNT/beta-catenin pathway. Mol Carcinog 58(6):967–979. https://doi.org/10.1002/mc.22985

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Z, Ni H, You B, Shi S, Shan Y, Bao L, Duan B, You Y (2018) Elevated EGFL6 modulates cell metastasis and growth via AKT pathway in nasopharyngeal carcinoma. Cancer medicine 7(12):6281–6289. https://doi.org/10.1002/cam4.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. An J, Du Y, Fan X, Wang Y, Ivan C, Zhang XG, Sood AK, An Z, Zhang N (2019) EGFL6 promotes breast cancer by simultaneously enhancing cancer cell metastasis and stimulating tumor angiogenesis. Oncogene 38(12):2123–2134. https://doi.org/10.1038/s41388-018-0565-9

    Article  CAS  PubMed  Google Scholar 

  16. Noh K, Mangala LS, Han HD, Zhang N, Pradeep S, Wu SY, Ma S, Mora E, Rupaimoole R, Jiang D, Wen Y, Shahzad MMK, Lyons Y, Cho M, Hu W, Nagaraja AS, Haemmerle M, Mak CSL, Chen X, Gharpure KM, Deng H, **ong W, Kingsley CV, Liu J, Jennings N, Birrer MJ, Bouchard RR, Lopez-Berestein G, Coleman RL, An Z, Sood AK (2017) Differential effects of EGFL6 on tumor versus wound angiogenesis. Cell Rep 21(10):2785–2795. https://doi.org/10.1016/j.celrep.2017.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oberauer R, Rist W, Lenter MC, Hamilton BS, Neubauer H (2010) EGFL6 is increasingly expressed in human obesity and promotes proliferation of adipose tissue-derived stromal vascular cells. Mol Cell Biochem 343(1–2):257–269. https://doi.org/10.1007/s11010-010-0521-7

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Gong Y, Wang D, **e Q, Zheng M, Zhou Y, Li Q, Yang Z, Tang H, Li Y, Hu R, Chen X, Mao Y (2012) Analysis of gene expression profiling in meningioma: deregulated signaling pathways associated with meningioma and EGFL6 overexpression in benign meningioma tissue and serum. PLoS One 7(12):e52707. https://doi.org/10.1371/journal.pone.0052707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chim SM, Qin A, Tickner J, Pavlos N, Davey T, Wang H, Guo Y, Zheng MH, Xu J (2011) EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase. J Biol Chem 286(25):22035–22046. https://doi.org/10.1074/jbc.M110.187633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29(3):212–226. https://doi.org/10.1016/j.tcb.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Lin Z, Sun L, Fan S, Huang Z, Zhang D, Yang Z, Li J, Chen W (2014) Akt/Ezrin Tyr353/NF-kappaB pathway regulates EGF-induced EMT and metastasis in tongue squamous cell carcinoma. Br J Cancer 110(3):695–705. https://doi.org/10.1038/bjc.2013.770

    Article  CAS  PubMed  Google Scholar 

  22. Sheng W, Chen C, Dong M, Wang G, Zhou J, Song H, Li Y, Zhang J, Ding S (2017) Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis 8(10):e3147. https://doi.org/10.1038/cddis.2017.547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang XH, He X, ** HY, Liang JX, Li N (2018) Effect of hypoxia on the Twist1 in EMT of cervical cancer cells. European review for medical and pharmacological sciences 22(20):6633–6639. https://doi.org/10.26355/eurrev_201810_16138

    Article  PubMed  Google Scholar 

  24. Zhang YC, Huo FC, Wei LL, Gong CC, Pan YJ, Mou J, Pei DS (2017) PAK5-mediated phosphorylation and nuclear translocation of NF-kappaB-p65 promotes breast cancer cell proliferation in vitro and in vivo. Journal of experimental & clinical cancer research : CR 36(1):146. https://doi.org/10.1186/s13046-017-0610-5

    Article  CAS  Google Scholar 

  25. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102. https://doi.org/10.1093/nar/gkx247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huo FC, Pan YJ, Li TT, Mou J, Pei DS (2019) PAK5 promotes the migration and invasion of cervical cancer cells by phosphorylating SATB1. Cell Death Differ 26(6):994–1006. https://doi.org/10.1038/s41418-018-0178-4

    Article  CAS  PubMed  Google Scholar 

  27. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) Emt: 2016. Cell 166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  28. Luo J, Yao JF, Deng XF, Zheng XD, Jia M, Wang YQ, Huang Y, Zhu JH (2018) 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin alphavbeta3 and activating FAK/PI3K/AKT signaling. Journal of experimental & clinical cancer research : CR 37(1):23. https://doi.org/10.1186/s13046-018-0694-6

    Article  CAS  Google Scholar 

  29. Cheng Y, Pan Y, Pan Y, Wang O (2019) MNX1-AS1 is a functional oncogene that induces EMT and activates the AKT/mTOR pathway and MNX1 in breast cancer. Cancer Manag Res 11:803–812. https://doi.org/10.2147/CMAR.S188007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Zhong Y, Hou T, Liao J, Zhang C, Sun C, Wang G (2019) PM2.5 induces EMT and promotes CSC properties by activating notch pathway in vivo and vitro. Ecotoxicol Environ Saf 178:159–167. https://doi.org/10.1016/j.ecoenv.2019.03.086

    Article  CAS  PubMed  Google Scholar 

  31. Hu X, Zhai Y, Kong P, Cui H, Yan T, Yang J, Qian Y, Ma Y, Wang F, Li H, Cheng C, Zhang L, Jia Z, Li Y, Yang B, Xu E, Wang J, Yang J, Bi Y, Chang L, Wang Y, Zhang Y, Song B, Li G, Shi R, Liu J, Zhang M, Cheng X, Cui Y (2017) FAT1 prevents epithelial mesenchymal transition (EMT) via MAPK/ERK signaling pathway in esophageal squamous cell cancer. Cancer Lett 397:83–93. https://doi.org/10.1016/j.canlet.2017.03.033

    Article  CAS  PubMed  Google Scholar 

  32. Zhang PF, Li KS, Shen YH, Gao PT, Dong ZR, Cai JB, Zhang C, Huang XY, Tian MX, Hu ZQ, Gao DM, Fan J, Ke AW, Shi GM (2016) Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis 7:e2201. https://doi.org/10.1038/cddis.2015.324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou Q, Yu B, Anderson C, Huang ZP, Hanus J, Zhang W, Han Y, Bhattacharjee PS, Srinivasan S, Zhang K, Wang DZ, Wang S (2019) LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus. eLife 8. https://doi.org/10.7554/eLife.40470

  34. Usuba R, Pauty J, Soncin F, Matsunaga YT (2019) EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials 197:305–316. https://doi.org/10.1016/j.biomaterials.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  35. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18(2):128–134. https://doi.org/10.1038/nrc.2017.118

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Zhou BP (2011) Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chinese journal of cancer 30(9):603–611. https://doi.org/10.5732/cjc.011.10226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang H, Lian Z, Lerch MM, Chen Z, **e W, Ullrich A (1996) Characterization of PCP-2, a novel receptor protein tyrosine phosphatase of the MAM domain family. Oncogene 12(12):2555–2562

    CAS  PubMed  Google Scholar 

  38. Xu S, Ge J, Zhang Z, Zhou W (2017) MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 96:634-641. doi:https://doi.org/10.1016/j.biopha.2017.10.037

  39. Osada A, Kiyozumi D, Tsutsui K, Ono Y, Weber CN, Sugimoto N, Imai T, Okada A, Sekiguchi K (2005) Expression of MAEG, a novel basement membrane protein, in mouse hair follicle morphogenesis. Exp Cell Res 303(1):148–159. https://doi.org/10.1016/j.yexcr.2004.04.053

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan-Sheng Zhang or Jie Mou.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

Experiments involved in GC tissues was approved by the Medical Ethics Committee of the Affiliated Hospital of Xuzhou Medical University. Animal experiments were performed in accordance with the Institutional Animal Care and Use Committee of Xuzhou Medical University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, FC., Zhu, WT., Liu, X. et al. Epidermal growth factor-like domain multiple 6 (EGFL6) promotes the migration and invasion of gastric cancer cells by inducing epithelial-mesenchymal transition. Invest New Drugs 39, 304–316 (2021). https://doi.org/10.1007/s10637-020-01004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-020-01004-2

Keywords

Navigation