Log in

Phase II trial of gemcitabine and tanespimycin (17AAG) in metastatic pancreatic cancer: a Mayo Clinic Phase II Consortium study

  • PHASE II STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Objectives Heat Shock Protein 90 (HSP90) is a molecular chaperone that stabilizes many oncogenic proteins. HSP90 inhibitors may sensitize tumors to cytotoxic agents by causing client protein degradation. Gemcitabine, which has modest activity in pancreas cancer, activates Chk1, a client protein of HSP90. This phase II trial was designed to determine whether 17AAG could enhance the clinical activity of gemcitabine through degradation of Chk1 in patients with stage IV pancreatic cancer. Methods A multicenter, prospective study combining gemcitabine and 17AAG enrolled patients with stage IV pancreatic adenocarcinoma, adequate liver and kidney function, ECOG performance status 0–2, and no prior chemotherapy for metastatic disease. The primary goal was to achieve a 60 % overall survival at 6 months. Sixty-six patients were planned for accrual, with an interim analysis after 25 patients enrolled. Results After a futility analysis to achieve the endpoint, accrual was halted with 21 patients enrolled. No complete or partial responses were seen. Forty percent of patients were alive at 6 months. Median overall survival was 5.4 months. Tolerability was moderate, with 65 % of patients having ≥ grade 3 adverse events (AE), and 15 % having grade 4 events. Conclusions The lack of clinical activity suggests that targeting Chk1 by inhibiting HSP90 is not important in pancreatic cancer sensitivity to gemcitabine alone. Further studies of HSP90 targeted agents with gemcitabine alone are not warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cancer facts and figures (2013). American Cancer Society, Atlanta

  2. Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413

    CAS  PubMed  Google Scholar 

  3. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703. doi:10.1056/NEJMoa1304369

    Article  Google Scholar 

  4. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360

    CAS  PubMed  Google Scholar 

  5. An WG, Schnur RC, Neckers L, Blagosklonny MV (1997) Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity. Cancer Chemother Pharmacol 40(1):60–64

    Article  CAS  PubMed  Google Scholar 

  6. Schnur RC, Corman ML, Gallaschun RJ, Cooper BA, Dee MF, Doty JL, Muzzi ML, Moyer JD, DiOrio CI, Barbacci EG et al (1995) Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J Med Chem 38(19):3806–3812

    Article  CAS  PubMed  Google Scholar 

  7. Xu W, Yuan X, Jung YJ, Yang Y, Basso A, Rosen N, Chung EJ, Trepel J, Neckers L (2003) The heat shock protein 90 inhibitor geldanamycin and the ErbB inhibitor ZD1839 promote rapid PP1 phosphatase-dependent inactivation of AKT in ErbB2 overexpressing breast cancer cells. Cancer Res 63(22):7777–7784

    CAS  PubMed  Google Scholar 

  8. Altomare DA, Tanno S, De Rienzo A, Klein-Szanto AJ, Skele KL, Hoffman JP, Testa JR (2002) Frequent activation of AKT2 kinase in human pancreatic carcinomas. J Cell Biochem 87(4):470–476

    Article  PubMed  Google Scholar 

  9. Semba S, Moriya T, Kimura W, Yamakawa M (2003) Phosphorylated Akt/PKB controls cell growth and apoptosis in intraductal papillary-mucinous tumor and invasive ductal adenocarcinoma of the pancreas. Pancreas 26(3):250–257

    Article  CAS  PubMed  Google Scholar 

  10. Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8(1):27–32. doi:10.1038/ng0994-27

    Article  CAS  PubMed  Google Scholar 

  11. Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ, Vroman BT, Thomas MB, Baek YU, Hopkins KM, Lieberman HB, Chen J, Cliby WA, Kaufmann SH (2005) Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68(6):1636–1644. doi:10.1124/mol.105.012716

    CAS  PubMed  Google Scholar 

  12. Arlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM (2003) Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem 278(52):52572–52577. doi:10.1074/jbc.M309054200

    Article  CAS  PubMed  Google Scholar 

  13. Hubbard J, Erlichman C, Toft DO, Qin R, Stensgard BA, Felten S, Ten Eyck C, Batzel G, Ivy SP, Haluska P (2011) Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Investig New Drugs 29(3):473–480. doi:10.1007/s10637-009-9381-y

    Article  CAS  Google Scholar 

  14. Kaplan E, Meier P (1958) Nonparametric estimation for incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  15. Hendrickson AE, Oberg AL, Glaser G, Camoriano JK, Peethambaram PP, Colon-Otero G, Erlichman C, Ivy SP, Kaufmann SH, Karnitz LM, Haluska P (2012) A phase II study of gemcitabine in combination with tanespimycin in advanced epithelial ovarian and primary peritoneal carcinoma. Gynecol Oncol 124(2):210–215. doi:10.1016/j.ygyno.2011.10.002

    Article  PubMed  Google Scholar 

  16. Kaufmann SH, Karp JE, Litzow MR, Mesa RA, Hogan W, Steensma DP, Flatten KS, Loegering DA, Schneider PA, Peterson KL, Maurer MJ, Smith BD, Greer J, Chen Y, Reid JM, Ivy SP, Ames MM, Adjei AA, Erlichman C, Karnitz LM (2011) Phase I and pharmacological study of cytarabine and tanespimycin in relapsed and refractory acute leukemia. Haematologica 96(11):1619–1626. doi:10.3324/haematol.2011.049551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kim HR, Kang HS, Kim HD (1999) Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB Life 48(4):429–433. doi:10.1080/713803536

    Article  CAS  PubMed  Google Scholar 

  18. McCollum AK, Lukasiewicz KB, Teneyck CJ, Lingle WL, Toft DO, Erlichman C (2008) Cisplatin abrogates the geldanamycin-induced heat shock response. Mol Cancer Ther 7(10):3256–3264. doi:10.1158/1535-7163.MCT-08-0157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF (1996) A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1(4):237–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Whitesell L, Bagatell R, Falsey R (2003) The stress response: implications for the clinical development of hsp90 inhibitors. Curr Cancer Drug Targets 3(5):349–358

    Article  CAS  PubMed  Google Scholar 

  21. Winklhofer KF, Reintjes A, Hoener MC, Voellmy R, Tatzelt J (2001) Geldanamycin restores a defective heat shock response in vivo. J Biol Chem 276(48):45160–45167. doi:10.1074/jbc.M104873200

    Article  CAS  PubMed  Google Scholar 

  22. Bagatell R, Paine-Murrieta GD, Taylor CW, Pulcini EJ, Akinaga S, Benjamin IJ, Whitesell L (2000) Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res 6(8):3312–3318

    CAS  PubMed  Google Scholar 

  23. Burris HA 3rd, Berman D, Murthy B, Jones S (2011) Tanespimycin pharmacokinetics: a randomized dose-escalation crossover phase 1 study of two formulations. Cancer Chemother Pharmacol 67(5):1045–1054. doi:10.1007/s00280-010-1398-6

    Article  CAS  PubMed  Google Scholar 

  24. Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R (2013) Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treat Rev 39(4):375–387. doi:10.1016/j.ctrv.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  25. Goldman JW, Raju RN, Gordon GA, El-Hariry I, Teofilivici F, Vukovic VM, Bradley R, Karol MD, Chen Y, Guo W, Inoue T, Rosen LS (2013) A first in human, safety, pharmacokinetics, and clinical activity phase I study of once weekly administration of the Hsp90 inhibitor ganetespib (STA-9090) in patients with solid malignancies. BMC Cancer 13:152. doi:10.1186/1471-2407-13-152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hong D, Said R, Falchook G, Naing A, Moulder S, Tsimberidou AM, Galluppi G, Dakappagari N, Storgard C, Kurzrock R, Rosen LS (2013) Phase I study of BIIB028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin Cancer Res 19(17):4824–4831. doi:10.1158/1078-0432.CCR-13-0477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sessa C, Shapiro GI, Bhalla KN, Britten C, Jacks KS, Mita M, Papadimitrakopoulou V, Pluard T, Samuel TA, Akimov M, Quadt C, Fernandez-Ibarra C, Lu H, Bailey S, Chica S, Banerji U (2013) First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clin Cancer Res 19(13):3671–3680. doi:10.1158/1078-0432.CCR-12-3404

    Article  CAS  PubMed  Google Scholar 

Download references

Funding disclosure

Supported by P50 SPORE CA102701, N01-CM-2011-00099, CA15083, Georgeson Professorship Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina S. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, K.S., Kim, G.P., Foster, N.R. et al. Phase II trial of gemcitabine and tanespimycin (17AAG) in metastatic pancreatic cancer: a Mayo Clinic Phase II Consortium study. Invest New Drugs 33, 963–968 (2015). https://doi.org/10.1007/s10637-015-0246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-015-0246-2

Keywords

Navigation