Log in

TGF-β1 Secreted by Hepatocellular Carcinoma Induces the Expression of the Foxp3 Gene and Suppresses Antitumor Immunity in the Tumor Microenvironment

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Aim

The purpose of this study was to explore the mechanisms of TGF-β1 mediated immunosuppression in tumor stroma.

Methods

The expression of TGF-β1 was investigated in Huh7, Hep 3B, SGC-7901, Eca-109 and Hepa1-6 cell lines using immunofluorescence. Knocked-down TGF-β1 of the Hepa1-6 cell line was established through lentivirus-based RNA interference. The interference efficiency of the TGF-β1 gene was tested by real-time PCR and ELISA; the expression of Foxp3, IFN-γ and CD83 in CD4+, CD8+ or dendritic cells was examined via flow cytometry; and the tumorigenic ability of the cancer cells was investigated in the animal experiments.

Results

The diverse digestive cancer cells were found to secrete TGF-β1, mRNA of which was knocked down by 78 % thanks to lentivirus-based interference in Hepa1-6 cells. Flow cytometry showed that CD4+CD25+Foxp3+ regulatory T cells significantly increased in hepatocellular carcinoma patients when compared with those in the healthy controls. The supernatant from Hepa1-6 cells and recombinant TGF-β1 significantly induced the expression of Foxp3 gene in vitro, while that from sh TGF-β1 Hepa1-6 cells restored it. Hepa1-6 cells inhibited IFN-γ and CD83 expression in CD8+ or dendritic cells by secreting TGF-β1. The animal experiments indicated that the knockdown TGF-β1 gene impaired the tumorigenic ability of Hepa1-6 cells.

Conclusion

TGF-β1, expressed in cancer cells, might be a potential therapeutic target for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Newfeld SJ, Wisotzkey RG, Kumar S. Molecular evolution of a developmental pathway: phylogenetic analyses of transforming growth factor-beta family ligands, receptors and Smad signal transducers. Genetics. 1999;152:783–795.

    PubMed  CAS  Google Scholar 

  2. Govinden R, Bhoola KD. Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol Ther. 2003;98:257–265.

    Article  PubMed  CAS  Google Scholar 

  3. Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev. 2002;23:787–823.

    Article  PubMed  CAS  Google Scholar 

  4. Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.

    Article  PubMed  CAS  Google Scholar 

  5. Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82:85–91.

    Article  PubMed  CAS  Google Scholar 

  6. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse TGF-β1 gene results in multifocal inflammatory diseases. Nature. 1992;359:693–699.

    Article  PubMed  CAS  Google Scholar 

  7. Kulkarni AB, Huh CG, Becker D, et al. TGF-β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA. 1993;90:770–774.

    Article  PubMed  CAS  Google Scholar 

  8. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–172.

    Article  PubMed  CAS  Google Scholar 

  9. Akhurst RJ, Derynck R. TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol. 2001;11:S44–S51.

    PubMed  CAS  Google Scholar 

  10. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13:7003–7011.

    Article  PubMed  CAS  Google Scholar 

  11. Portella G, Cumming SA, Liddell J, et al. Transforming growth factor beta is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ. 1998;9:393–404.

    PubMed  CAS  Google Scholar 

  12. Xu Z, Shen MX, Ma DZ, Wang LY, Zha XL. TGF-beta 1-promoted epithelial-to-mesenchymal transformation and cell adhesion contribute to TGF-beta 1-enhanced cell migration in SMMC-7721 cells. Cell Res. 2003;13:343–350.

    Article  PubMed  Google Scholar 

  13. Poon RTP, Ng IOL, Lau C, et al. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma: a prospective study. J Clin Oncol. 2002;20:1775–1785.

    Article  PubMed  Google Scholar 

  14. Ananth S, Knebelmann B, Gruning W, et al. Transforming growth factor beta 1 is a target for the von Hippel–Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma. Cancer Res. 1999;59:2210–2216.

    PubMed  CAS  Google Scholar 

  15. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR. Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res. 2002;62:6021–6025.

    PubMed  CAS  Google Scholar 

  16. Wang Y, Liu XP, Zhao ZB, Chen JH, Yu CG. Expression of CD4(+) forkhead box P3 (FOXP3)(+) regulatory T cells in inflammatory bowel disease. J Dig Dis. 2011;12:286–294.

    Article  PubMed  CAS  Google Scholar 

  17. Krenger W, Rossi S, Piali L, Hollander GA. Thymic atrophy in murine acute graft-versus-host disease is effected by impaired cell cycle progression of host pro-T and pre-T cells. Blood. 2000;96:347–354.

    PubMed  CAS  Google Scholar 

  18. Centers for Disease Control and Prevention. Progress in hepatitis B prevention through universal infant vaccination—China, 1997-2006. MMWR Morb Mortal Wkly Rep. 2007;56:441–445.

    Google Scholar 

  19. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–1022.

    Article  PubMed  Google Scholar 

  20. Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol. 2008;48:S20–S37.

    Article  PubMed  CAS  Google Scholar 

  21. Lencioni R, Cioni D, Crocetti L, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology. 2005;234:961–967.

    Article  PubMed  Google Scholar 

  22. Omata M, Tateishi R, Yoshida H, Shiina S. Treatment of hepatocellular carcinoma by percutaneous tumor ablation methods: ethanol injection therapy and radiofrequency ablation. Gastroenterology. 2004;127:S159–S166.

    Article  PubMed  Google Scholar 

  23. Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37:429–442.

    Article  PubMed  CAS  Google Scholar 

  24. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–390.

    Article  PubMed  CAS  Google Scholar 

  25. Gold LI. The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog. 1999;10:303–360.

    PubMed  CAS  Google Scholar 

  26. Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer. J Clin Oncol. 2005;23:2078–2093.

    Article  PubMed  CAS  Google Scholar 

  27. Fu J, Xu D, Liu Z, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132:2328–2339.

    Article  PubMed  Google Scholar 

  28. Zhou J, Ding T, Pan W, Zhu L-y, Li L, Zheng L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer. 2009;125:1640–1648.

    Article  PubMed  CAS  Google Scholar 

  29. Gao Q, Qiu S-J, Fan J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25:2586–2593.

    Article  PubMed  Google Scholar 

  30. Chen K-J, Lin S-Z, Zhou L, et al. Selective recruitment of regulatory T cell through CCR6-CCL20 in hepatocellular carcinoma fosters tumor progression and predicts poor prognosis. PLoS ONE. 2011;6:e24671.

    Article  PubMed  CAS  Google Scholar 

  31. Riemensberger J, Bohle A, Brandau S. IFN-gamma and IL-12 but not IL-10 are required for local tumour surveillance in a syngeneic model of orthotopic bladder cancer. Clin Exp Immunol. 2002;127:20–26.

    Article  PubMed  CAS  Google Scholar 

  32. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–189.

    Article  PubMed  CAS  Google Scholar 

  33. Shankaran V, Ikeda H, Bruce AT, et al. IFN gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–1111.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the team members of Prof. **zhong Shen's laboratory for their helpful discussion and critical reading of the manuscript. This study was supported by Shanghai Science and Technology Commission (10410709400; 10411950100) and National Nature Science Foundation of China (No. 30872503; No. 81000968; No. 81101540; No. 81172273), the National Clinical Key Special Subject of China.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **zhong Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Deng, B., Tang, W. et al. TGF-β1 Secreted by Hepatocellular Carcinoma Induces the Expression of the Foxp3 Gene and Suppresses Antitumor Immunity in the Tumor Microenvironment. Dig Dis Sci 58, 1644–1652 (2013). https://doi.org/10.1007/s10620-012-2550-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2550-4

Keywords

Navigation