Log in

Osteopontin Contributes to TGF-β1 Mediated Hepatic Stellate Cell Activation

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Purpose

Liver fibrosis is characterized by accumulation of extracellular matrix. Our previous study found that osteopontin (OPN) increased in plasma of cirrhotic patients and indicative of cirrhosis staging. The present study was designed to investigate the expression of OPN in liver tissues and plasma of cirrhotic patients and further explore the role of OPN in human hepatic stellate cell (HSC) activation.

Methods

We used immunohistochemical staining and enzyme-linked immunosorbent assay to evaluate the expression level of OPN in liver tissues and plasma from cirrhotic patients, respectively. We produced lentivirus particles and infected target cell to manipulate OPN expression. Infection efficiency was determined by real-time RT-PCR and western blot. Cell proliferation was determined using CCK8 assay, and phenotypes of HSC activation were determined by real-time RT-PCR. OPN promoter activity was determined by dual luciferase reporter assay.

Results

We found that OPN expression in human cirrhotic liver tissues was upregulated compared to normal controls. In addition, its expression correlated with Child-Pugh classification, MELD score and the occurrence of complications. We further explored OPN level in patients’ plasma and showed that its level correlated with transforming growth factor-β1 (TGF-β1). In human HSC cell line LX-2, we found that change of OPN expression level could not only affect the proliferation of cells but also the TGF-β1 mediated HSC activation. Moreover, OPN was increased by TGF-β1 stimulation and regulated by TGF-β1 at transcription level.

Conclusions

OPN is upregulated in liver tissues and plasma of cirrhotic patients and promotes TGF-β1 mediated HSC activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–218.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med. 2007;131:1728–1734.

    CAS  PubMed  Google Scholar 

  3. Carpino G, Franchitto A, Morini S, et al. Activated hepatic stellate cells in liver cirrhosis. A morphologic and morphometrical study. Ital J Anat Embryol. 2004;109:225–238.

    PubMed  Google Scholar 

  4. Kawada N. Human hepatic stellate cells are resistant to apoptosis: implications for human fibrogenic liver disease. Gut. 2006;55:1073–1074.

    Article  CAS  PubMed  Google Scholar 

  5. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25:195–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med. 2006;10:76–99.

    Article  CAS  PubMed  Google Scholar 

  7. Ueberham E, Low R, Ueberham U, et al. Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology. 2003;37:1067–1078.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng K, Yang N, Mahato RI. TGF-beta1 gene silencing for treating liver fibrosis. Mol Pharm. 2009;6:772–779.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lee JH, Lee H, Joung YK, et al. The use of low molecular weight heparin-pluronic nanogels to impede liver fibrosis by inhibition the TGF-beta/Smad signaling pathway. Biomaterials. 2011;32:1438–1445.

    Article  CAS  PubMed  Google Scholar 

  10. Du SS, Qiang M, Zeng ZC, et al. Radiation-induced liver fibrosis is mitigated by gene therapy inhibiting transforming growth factor-beta signaling in the rat. Int J Radiat Oncol Biol Phys. 2010;78:1513–1523.

    Article  CAS  PubMed  Google Scholar 

  11. Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol. 2006;44:57–66.

    Article  CAS  PubMed  Google Scholar 

  12. Nagao M, Feinstein TN, Ezura Y, et al. Sympathetic control of bone mass regulated by osteopontin. Proc Natl Acad Sci USA. 2011;108:17767–17772.

    Article  CAS  PubMed  Google Scholar 

  13. Schordan S, Schordan E, Endlich K, Endlich N. AlphaV-integrins mediate the mechanoprotective action of osteopontin in podocytes. Am J Physiol Renal Physiol. 2011;300:F119–F132.

    Article  CAS  PubMed  Google Scholar 

  14. Maki M, Hirota S, Kaneko Y, Morohoshi T. Expression of osteopontin messenger RNA by macrophages in ovarian serous papillary cystadenocarcinoma: a possible association with calcification of psammoma bodies. Pathol Int. 2000;50:531–535.

    Article  CAS  PubMed  Google Scholar 

  15. Apparao KB, Murray MJ, Fritz MA, et al. Osteopontin and its receptor alphavbeta(3) integrin are coexpressed in the human endometrium during the menstrual cycle but regulated differentially. J Clin Endocrinol Metab. 2001;86:4991–5000.

    CAS  PubMed  Google Scholar 

  16. Giachelli CM, Steitz S. Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol. 2000;19:615–622.

    Article  CAS  PubMed  Google Scholar 

  17. Mazzali M, Kipari T, Ophascharoensuk V, et al. Osteopontin—a molecule for all seasons. QJM. 2002;95:3–13.

    Article  CAS  PubMed  Google Scholar 

  18. O’Regan A. The role of osteopontin in lung disease. Cytokine Growth Factor Rev. 2003;14:479–488.

    Article  PubMed  Google Scholar 

  19. Johnson GA, Burghardt RC, Bazer FW, Spencer TE. Osteopontin: roles in implantation and placentation. Biol Reprod. 2003;69:1458–1471.

    Article  CAS  PubMed  Google Scholar 

  20. Philip S, Bulbule A, Kundu GC. Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem. 2001;276:44926–44935.

    Article  CAS  PubMed  Google Scholar 

  21. Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest. 2001;107:1055–1061.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lee SH, Seo GS, Park YN, Yoo TM, Sohn DH. Effects and regulation of osteopontin in rat hepatic stellate cells. Biochem Pharmacol. 2004;68:2367–2378.

    Article  CAS  PubMed  Google Scholar 

  23. Syn WK, Choi SS, Liaskou E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53:106–115.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Urtasun R, Lopategi A, George J, et al. Osteopontin, an oxidant stress-sensitive cytokine, up-regulates collagen-i via integrin alpha(V) beta(3) engagement and PI3K–pAkt–NFkappaB signaling. Hepatology. 2012;55:594–608.

    Google Scholar 

  25. Zhao L, Li T, Wang Y, et al. Elevated plasma osteopontin level is predictive of cirrhosis in patients with hepatitis B infection. Int J Clin Pract. 2008;62:1056–1062.

    Article  CAS  PubMed  Google Scholar 

  26. Delimpoura V, Bakakos P, Tseliou E, et al. Increased levels of osteopontin in sputum supernatant in severe refractory asthma. Thorax. 2010;65:782–786.

    Article  PubMed  Google Scholar 

  27. Zhao L, Jiang S, Hantash BM. Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tiss Eng Part A. 2010;16:725–733.

    Article  CAS  Google Scholar 

  28. Wang WH, Jiang CL, Yan W, et al. FOXP3 expression and clinical characteristics of hepatocellular carcinoma. World J Gastroenterol. 2010;16:5502–5509.

    Article  PubMed  Google Scholar 

  29. Xu L, Hui AY, Albanis E, et al. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut. 2005;54:142–151.

    Article  CAS  PubMed  Google Scholar 

  30. Li YL, Wu J, Wei D, et al. Newcastle disease virus represses the activation of human hepatic stellate cells and reverses the development of hepatic fibrosis in mice. Liver Int. 2009;29:593–602.

    Article  PubMed  Google Scholar 

  31. Paradis V, Dargere D, Bonvoust F, et al. Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest. 2002;82:767–774.

    Article  CAS  PubMed  Google Scholar 

  32. Thampanitchawong P, Piratvisuth T. Liver biopsy: complications and risk factors. World J Gastroenterol. 1999;5:301–304.

    PubMed  Google Scholar 

  33. Regev A, Berho M, Jeffers LJ, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol. 2002;97:2614–2618.

    Article  PubMed  Google Scholar 

  34. Ahmad W, Ijaz B, Gull S, et al. A brief review on molecular, genetic and imaging techniques for HCV fibrosis evaluation. Virol J. 2011;8:53.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Denzer UW, Luth S. Non-invasive diagnosis and monitoring of liver fibrosis and cirrhosis. Best Pract Res Clin Gastroenterol. 2009;23:453–460.

    Article  PubMed  Google Scholar 

  36. Cao S, Yaqoob U, Das A, et al. Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-beta signaling in hepatic stellate cells. J Clin Invest. 2010;120:2379–2394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kamath PS, Kim WR. The model for end-stage liver disease (MELD). Hepatology. 2007;45:797–805.

    Article  PubMed  Google Scholar 

  39. Huang W, Zhu G, Huang M, et al. Plasma osteopontin concentration correlates with the severity of hepatic fibrosis and inflammation in HCV-infected subjects. Clin Chim Acta. 2010;411:675–678.

    Article  CAS  PubMed  Google Scholar 

  40. El-Din BS, Elwan NM, Suliman GA, El-Shourbagy SH. Clinical significance of plasma osteopontin level in Egyptian patients with hepatitis C virus-related hepatocellular carcinoma. Arch Med Res. 2010;41:541–547.

    Article  Google Scholar 

  41. Stevenson M, Lloyd-Jones M, Morgan M, Wong R. Non-invasive diagnostic assessment tools for the detection of liver fibrosis in patients with suspected alcohol-related liver disease: a systematic review and economic evaluation. Health Technol Assess. 2012;16:1–174.

    CAS  Google Scholar 

  42. Hunter C, Bond J, Kuo PC, Selim MA, Levinson H. The role of osteopontin and osteopontin aptamer (OPN-R3) in fibroblast activity. J Surg Res. 2011.

  43. Schaefer B, Rivas-Estilla AM, Meraz-Cruz N, et al. Reciprocal modulation of matrix metalloproteinase-13 and type I collagen genes in rat hepatic stellate cells. Am J Pathol. 2003;162:1771–1780.

    Article  CAS  PubMed  Google Scholar 

  44. Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol. 2007;22:S73–S78.

    Article  CAS  PubMed  Google Scholar 

  45. Borkham-Kamphorst E, Herrmann J, Stoll D, et al. Dominant-negative soluble PDGF-beta receptor inhibits hepatic stellate cell activation and attenuates liver fibrosis. Lab Invest. 2004;84:766–777.

    Article  CAS  PubMed  Google Scholar 

  46. Di Sario A, Bendia E, Svegliati BG, et al. Effect of pirfenidone on rat hepatic stellate cell proliferation and collagen production. J Hepatol. 2002;37:584–591.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Sciences Foundation of China, No. 81070350. We thank Technician Zheng Chen in our lab and Dr. Jiuxu Bai from Shenyang General Hospital of PLA for technical assistance. We thank Professor Gaoliang Ouyang (School of Life Sciences, **amen University) for providing the OPN plasmid. We also thank Prof. Scott L. Friedman (Mount Sinai School of Medicine, USA) for providing LX-2 cells.

Conflict of interest

The authors declare no conflicts of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Liu or Daiming Fan.

Additional information

**ao **ao and Yi Gang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10620_2012_2248_MOESM1_ESM.tif

Fig. S1 Comparison of OPN and TIMP1 expression levels in consecutive sections of cirrhotic liver tissues. Representative images of coordinate expression of OPN and TIMP1 (kappa = 0.518, P = 0.000) were showed (original magnification, 200×). (A, B) Positive OPN staining (A) and positive TIMP1 staining (B) were observed in consecutive sections of cirrhotic liver tissues. (C, D) Negative OPN staining (C) and negative TIMP1 staining (D) were observed in consecutive sections of cirrhotic liver tissues. Supplementary material 1 (TIFF 10,280 kb)

Supplementary material 2 (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

**ao, X., Gang, Y., Gu, Y. et al. Osteopontin Contributes to TGF-β1 Mediated Hepatic Stellate Cell Activation. Dig Dis Sci 57, 2883–2891 (2012). https://doi.org/10.1007/s10620-012-2248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2248-7

Keywords

Navigation