Log in

Genetic Association of Nonsynonymous Variants of the IL23R with Familial and Sporadic Inflammatory Bowel Disease in Women

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Purpose To replicate the association of IL23R R381Q (rs11209026) with inflammatory bowel disease (IBD), examine the effect of the two nonsynonymous variations, Q3H and L310P, on IBD, and to study gender distribution of these variants in IBD patients. Results IL23R R381Q was associated with Crohn’s disease (CD) (P = 0.010), but not with ulcerative colitis (UC); L310P was associated with UC (P = 0.004), but not with CD; no association was observed for Q3H with CD or UC. A female-specific association of R381Q with CD (P = 0.041), and of L310P with UC (P = 0.008) was observed. Conclusion We replicated the association of IL23R R381Q with CD but not UC, and we observed an association of L310P with UC, but not CD, in a central Pennsylvania population. Further analysis of the distribution of IL23R variants revealed that these effects were largely female-specific. The results suggest that IL23R R381Q confers protection against CD and that L310P confers protection against UC in females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Russell RK, Nimmo ER, Satsangi J. Molecular genetics of Crohn’s disease. Curr Opin Genet Dev. 2004;14:264–270. doi:10.1016/j.gde.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  2. Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet. 2005;6:376–388. doi:10.1038/nrg1607

    Article  CAS  PubMed  Google Scholar 

  3. Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev. 2005;206:260–276. doi:10.1111/j.0105-2896.2005.00291.x

    Article  PubMed  Google Scholar 

  4. Yang H, Ohmen JD, Ma Y, et al. Additional evidence of linkage between Crohn’s disease and a putative locus on chromosome 12. Genet Med. 1999;1:194–198

    CAS  PubMed  Google Scholar 

  5. Yang H, Plevy SE, Taylor K, et al. Linkage of Crohn’s disease to the major histocompatibility complex region is detected by multiple non-parametric analyses. Gut. 1999;44:519–526

    Article  CAS  PubMed  Google Scholar 

  6. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603. doi:10.1038/35079107

    Article  CAS  PubMed  Google Scholar 

  7. Hugot JP, Laurent-Puig P, Gower-Rousseau C, et al. Map** of a susceptibility locus for Crohn’s disease on chromosome 16. Nature. 1996;379:821–823. doi:10.1038/379821a0

    Article  CAS  PubMed  Google Scholar 

  8. Koltun W, Zhang W, Thompson J, Boyer M, Galka E, Poritz L. Increased presence of NOD2 mutations in patients from a familial inflammatory bowel disease registry. Tripartite Colorectal Meeting. Dublin, Ireland; 2005

  9. Stoll M, Corneliussen B, Costello CM, et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet. 2004;36:476–480. doi:10.1038/ng1345

    Article  CAS  PubMed  Google Scholar 

  10. Peltekova VD, Wintle RF, Rubin LA, et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet. 2004;36:471–475. doi:10.1038/ng1339

    Article  CAS  PubMed  Google Scholar 

  11. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–1463. doi:10.1126/science.1135245

    Article  CAS  PubMed  Google Scholar 

  12. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–211. doi:10.1038/ng1954

    Article  CAS  PubMed  Google Scholar 

  13. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39:596–604. doi:10.1038/ng2032

    Article  CAS  PubMed  Google Scholar 

  14. Wellcome Trust Case Control C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678. doi:10.1038/nature05911. (see comment)

    Article  CAS  Google Scholar 

  15. Parkes M, Barrett JC, Prescott NJ, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39:830–832. doi:10.1038/ng2061

    Article  CAS  PubMed  Google Scholar 

  16. Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest. 2006;116:1218–1222. doi:10.1172/JCI28508

    Article  CAS  PubMed  Google Scholar 

  17. Uhlig HH, McKenzie BS, Hue S, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity. 2006;25:309–318. doi:10.1016/j.immuni.2006.05.017

    Article  CAS  PubMed  Google Scholar 

  18. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116:1310–1316. doi:10.1172/JCI21404

    Article  CAS  PubMed  Google Scholar 

  19. Tremelling M, Cummings F, Fisher SA, et al. IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology. 2007;132:1657–1664. doi:10.1053/j.gastro.2007.02.051

    Article  CAS  PubMed  Google Scholar 

  20. Oliver J, Rueda B, Lopez-Nevot MA, Gomez-Garcia M, Martin J. Replication of an association between IL23R gene polymorphism with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2007;5:977–981. doi:10.1016/j.cgh.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  21. Buning C, Schmidt HH, Molnar T, et al. Heterozygosity for IL23Rp.Arg381Gln confers a protective effect not only against Crohn’s disease but also ulcerative colitis. Aliment Pharmacol Ther. 2007;26:1025–1033

    CAS  PubMed  Google Scholar 

  22. Cummings JR, Ahmad T, Geremia A, et al. Contribution of the novel inflammatory bowel disease gene IL23R to disease susceptibility and phenotype. Inflamm Bowel Dis. 2007;13:1063–1068. doi:10.1002/ibd.20180

    Article  PubMed  Google Scholar 

  23. Baptista ML, Amarante H, Picheth G, et al. CARD15 and IL23R influences Crohn’s disease susceptibility but not disease phenotype in a Brazilian population. Inflamm Bowel Dis. 2008;14:674–679. doi:10.1002/ibd.20372

    Article  PubMed  Google Scholar 

  24. Libioulle C, Louis E, Hansoul S, et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet. 2007;3:e58. doi:10.1371/journal.pgen.0030058

    Article  PubMed  CAS  Google Scholar 

  25. Raelson JV, Little RD, Ruether A, et al. Genome-wide association study for Crohn’s disease in the Quebec Founder Population identifies multiple validated disease loci. Proc Natl Acad Sci USA. 2007;104:14747–14752. doi:10.1073/pnas.0706645104

    Article  CAS  PubMed  Google Scholar 

  26. Roberts RL, Gearry RB, Hollis-Moffatt JE, et al. IL23R R381Q and ATG16L1 T300A are strongly associated with Crohn’s disease in a study of New Zealand Caucasians with inflammatory bowel disease. Am J Gastroenterol. 2007;102:2754–2761. doi:10.1111/j.1572-0241.2007.01525.x

    Article  CAS  PubMed  Google Scholar 

  27. Weersma RK, Zhernakova A, Nolte IM, et al. ATG16L1 and IL23R are associated with inflammatory bowel diseases but not with celiac disease in The Netherlands. Am J Gastroenterol. 2008;103:621–627. doi:10.1111/j.1572-0241.2007.01660.x

    Article  CAS  PubMed  Google Scholar 

  28. Baldassano RN, Bradfield JP, Monos DS, et al. Association of the T300A non-synonymous variant of the ATG16L1 gene with susceptibility to paediatric Crohn’s disease. Gut. 2007;56:1171–1173. doi:10.1136/gut.2007.122747

    Article  PubMed  Google Scholar 

  29. Dubinsky MC, Wang D, Picornell Y, et al. IL-23 receptor (IL-23R) gene protects against pediatric Crohn’s disease. Inflamm Bowel Dis. 2007;13:511–515. doi:10.1002/ibd.20126

    Article  PubMed  Google Scholar 

  30. Van Limbergen J, Russell RK, Nimmo ER, et al. IL23R Arg381Gln is associated with childhood onset inflammatory bowel disease in Scotland. Gut. 2007;56:1173–1174. doi:10.1136/gut.2007.122069

    Article  PubMed  Google Scholar 

  31. Leshinsky-Silver E, Karban A, Dalal I, et al. Evaluation of the interleukin-23 receptor gene coding variant R381Q in pediatric and adult Crohn disease. J Pediatr Gastroenterol Nutr. 2007;45:405–408

    Article  PubMed  Google Scholar 

  32. Amre DK, Mack D, Israel D, et al. Association between genetic variants in the IL-23R gene and early-onset Crohn’s disease: results from a case-control and family-based study among Canadian children. Am J Gastroenterol. 2008;103:615–620. doi:10.1111/j.1572-0241.2007.01661.x

    Article  CAS  PubMed  Google Scholar 

  33. Yamazaki K, Onouchi Y, Takazoe M, Kubo M, Nakamura Y, Hata A. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn’s disease in Japanese patients. J Hum Genet. 2007;52:575–583. doi:10.1007/s10038-007-0156-z

    Article  CAS  PubMed  Google Scholar 

  34. Lin Z, Cui X, Li H. Multiplex genotype determination at a large number of gene loci. Proc Natl Acad Sci USA. 1996;93:2582–2587. doi:10.1073/pnas.93.6.2582

    Article  CAS  PubMed  Google Scholar 

  35. De La Vega FM, Lazaruk KD, Rhodes MD, Wenz MH. Assessment of two flexible and compatible SNP genoty** platforms: TaqMan SNP genoty** assays and the SNPlex genoty** system. Mutat Res. 2005;573:111–135. doi:10.1016/j.mrfmmm.2005.01.008

    PubMed  Google Scholar 

  36. Tobler AR, Short S, Andersen MR, et al. The SNPlex genoty** system: a flexible and scalable platform for SNP genoty**. J Biomol Tech. 2005;16:398–406

    PubMed  Google Scholar 

  37. Taylor KDTS, Mei L, Ippoliti AF, et al. IL23R haplotypes provide a large population attributable risk for Crohn’s disease. Inflamm Bowel Dis. 2008;14:1185–1191. doi:10.1002/ibd.20478

    Article  PubMed  Google Scholar 

  38. de Paus RA, van de Wetering D, van Dissel JT, van de Vosse E. IL-23 and IL-12 responses in activated human T cells retrovirally transduced with IL-23 receptor variants. Mol Immunol. 2008;45:3889–3895 doi:10.1016/j.molimm.2008.06.029

    Article  PubMed  CAS  Google Scholar 

  39. Bettelli E, Oukka M, Kuchroo VKT. (H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–350. doi:10.1038/ni0407-345

    Article  CAS  PubMed  Google Scholar 

  40. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–1132. doi:10.1038/ni1254

    Article  CAS  PubMed  Google Scholar 

  41. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–1141. doi:10.1038/ni1261

    Article  CAS  PubMed  Google Scholar 

  42. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3:521–533. doi:10.1038/nri1132.

    Article  CAS  PubMed  Google Scholar 

  43. O’Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol. 2000;10:542–550. doi:10.1016/S0962-8924(00)01856-0

    Article  PubMed  Google Scholar 

  44. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549 doi:10.1146/annurev.immunol.20.100301.064816

    Article  CAS  PubMed  Google Scholar 

  45. Becker C, Wirtz S, Blessing M, et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest. 2003;112:693–706

    CAS  PubMed  Google Scholar 

  46. Bousvaros A, Morley-Fletcher A, Pensabene L, Cucchiara S. Research and clinical challenges in paediatric inflammatory bowel disease. Dig Liver Dis. 2008;40:32–38. doi:10.1016/j.dld.2007.07.168

    Article  CAS  PubMed  Google Scholar 

  47. Duerr RH. Genome-wide association studies herald a new era of rapid discoveries in inflammatory bowel disease research. Gastroenterology. 2007;132:2045–2049. doi:10.1053/j.gastro.2007.03.082

    Article  CAS  PubMed  Google Scholar 

  48. Henckaerts L, Figueroa C, Vermeire S, Sans M. The role of genetics in inflammatory bowel disease. Curr Drug Targets. 2008;9:361–368. doi:10.2174/138945008784221161

    Article  CAS  PubMed  Google Scholar 

  49. Van Limbergen J, Russell RK, Nimmo ER, Satsangi J. The genetics of inflammatory bowel disease. Am J Gastroenterol. 2007;102:2820–2831. doi:10.1111/j.1572-0241.2007.01527.x

    Article  PubMed  Google Scholar 

  50. Friedrichs F, Brescianini S, Annese V, et al. Evidence of transmission ratio distortion of DLG5 R30Q variant in general and implication of an association with Crohn disease in men. Hum Genet. 2006;119:305–311. doi:10.1007/s00439-006-0133-1

    Article  PubMed  Google Scholar 

  51. Logan RF. Inflammatory bowel disease incidence: up, down or unchanged? Gut. 1998;42:309–311

    Article  CAS  PubMed  Google Scholar 

  52. Montgomery SM, Wakefield AJ, Ekbom A. Sex-specific risks for pediatric onset among patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2003;1:303–309. doi:10.1016/S1542-3565(03)00135-6

    Article  PubMed  Google Scholar 

  53. Kugathasan S, Judd RH, Hoffmann RG, et al. Epidemiologic and clinical characteristics of children with newly diagnosed inflammatory bowel disease in Wisconsin: a statewide population-based study. J Pediatr. 2003;143:525–531. doi:10.1067/S0022-3476(03)00444-X

    Article  PubMed  Google Scholar 

  54. Sawczenko A, Sandhu BK, Logan RF, et al. Prospective survey of childhood inflammatory bowel disease in the British Isles. Lancet. 2001;357:1093–1094. doi:10.1016/S0140-6736(00)04309-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the Philadelphia Health Care Trust (WAK), a Research Grant from the Barsumian Trust, Pennsylvania State University, College of Medicine (NJT), and a Research Fellowship from Alexander von Humboldt Foundation (ZL). The authors thank Rainer Vogler, Catharina Fuerstenau, Birthe Fedders, Tanja Wesse, Tanja Henke, and Lena Bossen for help with SNPlex genoty**, Tony Lin for his assistance with RFLP genoty**, Kimberly Walker, John Hegarty, and Gaylene Webber for their help in manuscript preparation. The authors gratefully acknowledge the Gift of Life Donor Program (Philadelphia, PA) and the generosity of the organ donor families for allowing these organs that are not suitable for transplantation to be utilized to advance the understanding of human disease.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenwu Lin or Walter A. Koltun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Z., Poritz, L., Franke, A. et al. Genetic Association of Nonsynonymous Variants of the IL23R with Familial and Sporadic Inflammatory Bowel Disease in Women. Dig Dis Sci 55, 739–746 (2010). https://doi.org/10.1007/s10620-009-0782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0782-8

Keywords

Navigation