Log in

Multi-fidelity meta-modeling for reservoir engineering - application to history matching

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Defining representative reservoir models usually calls for a huge number of fluid flow simulations, which may be very time-consuming. Meta-models are built to lessen this issue. They approximate a scalar function from the values simulated for a set of uncertain parameters. For time-dependent outputs, a reduced-basis approach can be considered. If the resulting meta-models are accurate, they can be called instead of the flow simulator. We propose here to investigate a specific approach named multi-fidelity meta-modeling to reduce further the simulation time. We assume that the outputs of interest are known at various levels of resolution: a fine reference level, and coarser levels for which computations are faster but less accurate. Multi-fidelity meta-models refer to co-kriging to approximate the outputs at the fine level using the values simulated at all levels. Such an approach can save simulation time by limiting the number of fine level simulations. The objective of this paper is to investigate the potential of multi-fidelity for reservoir engineering. The reduced-basis approach for time-dependent outputs is extended to the multi-fidelity context. Then, comparisons with the more usual kriging approach are proposed on a synthetic case, both in terms of computation time and predictivity. Meta-models are computed to evaluate the production responses at wells and the mismatch between the data and the simulated responses (history matching error), considering two levels of resolution. The results show that the multi-fidelity approach can outperform kriging if the target simulation time is small. Last, its potential is evidenced when used for history matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ankenman, B., Nelson, B. L., Staum, J.: Stochastic kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010). doi:10.1287/opre.1090.0754

    Article  Google Scholar 

  2. Busby, D.: Hierarchical adaptive experimental design for Gaussian process emulators. Reliab. Eng. Syst. Safe. 94(7), 1183–1193 (2009). doi:10.1016/j.ress.2008.07.007

    Article  Google Scholar 

  3. Cardwell Jr., W. T., Parsons, R. L.: Average permeabilities of heterogeneous oil sands. Society of Petroleum Engineers (1945). doi:10.2118/945034-G

    Google Scholar 

  4. Chilès, J., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999)

    Book  Google Scholar 

  5. Craig, P. S., Goldstein, M., Seheult, A. H., Smith, J. A.: Constructing partial prior specifications for models of complex physical systems. J. Roy. Stat. Soc. D-Sta. 47(1), 37–53 (1998). doi:10.1111/1467-9884.00115

    Article  Google Scholar 

  6. Da Veiga, S., Gervais, V.: Uncertainty analysis and history matching on grid responses from a reduced-basis approach. In: Paper Presented at the EAGE Annual Conference and Exhibition, Madrid, Spain. doi:10.3997/2214-4609.201413035 (2015)

  7. Douarche, F., Da Veiga, S., Feraille, M., Enchry, G., Touzani, S., Barsalou, R.: Sensitivity analysis and optimization of Surfactant-Polymer flooding under uncertainties. Oil Gas Sci. Technol. 69(4), 603–617 (2014). doi:10.2516/ogst/2013166

    Article  Google Scholar 

  8. Eide, A. L., Holden, L., Reiso, E., Aanonsen, S. I.: Automatic history matching by use of response surfaces and experimental design. In: Paper presented at ECMOR IV - 4th European Conference on the Mathematics of Oil Recovery, Rrøs, Norway. doi:10.3997/2214-4609.201411186 (1994)

  9. Fang, K. -T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman and Hall/CRC, Boca Raton (2005)

    Book  Google Scholar 

  10. Feraille, M.: An optimization strategy based on the maximization of Matching-Targets’ probability for unevaluated results. Oil Gas Sci. Technol. 68, 545–556 (2013). doi:10.2516/ogst/2012079

    Article  Google Scholar 

  11. Feraille, M., Marrel, A.: Prediction under uncertainty on a mature field. Oil Gas Sci. Technol. 67, 193–206 (2012). doi:10.2516/ogst/2011172

    Article  Google Scholar 

  12. Floris, F. J. T., Bush, M. D., Cuypers, M., Roggero, F., Syversveen, A. -R.: Methods for quantifying the uncertainty of production forecasts: a comparative study. Petrol. Geosci. 7, S87–S96 (2001). doi:10.1144/petgeo.7.S.S87

    Article  Google Scholar 

  13. Forrester, A. I. J., Keane, A. J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009). doi:10.1016/j.paerosci.2008.11.001

    Article  Google Scholar 

  14. Forrester, A. I. J., Sóbester, A., Keane, A. J.: Multi-fidelity optimization via surrogate modelling. P. Roy. Soc. A-Math. Phy. 463, 3251–3269 (2007). doi:10.1098/rspa.2007.1900

    Article  Google Scholar 

  15. Huang, D., Allen, T. T., Notz, W. I., Miller, R. A.: Sequential kriging optimization using multiple-fidelity evaluations. Struct. Multidiscip. O. 32(5), 369–382 (2006). doi:10.1007/s00158-005-0587-0

    Article  Google Scholar 

  16. Jones, D.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4), 345–383 (2001). doi:10.1023/A:1012771025575

    Article  Google Scholar 

  17. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive Black-Box functions. J. Global Optim. 13(4), 455–492 (1998). doi:10.1023/A:1008306431147

    Article  Google Scholar 

  18. Journel, A. G., Deutsch, C. V.: GSLIB Geostatistical Software Library and Users Guide, 2nd edn. Oxford University Press, New York (1998)

    Google Scholar 

  19. Kennedy, M., O’Hagan, A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika 87, 1–13 (2000). doi:10.1093/biomet/87.1.1

    Article  Google Scholar 

  20. Kuya, Y., Takeda, K., Zhang, X., Forrester, A. I. J.: Multifidelity surrogate modeling of experimental and computational aerodynamic data sets. AIAA J. 49, 289–298 (2011). doi:10.2514/1.J050384

    Article  Google Scholar 

  21. Le Gratiet, L.: Bayesian analysis of hierarchical multifidelity codes. SIAM/ASA Journal on Uncertainty Quantification 1, 244–269 (2013). doi:10.1137/120884122

    Article  Google Scholar 

  22. Le Gratiet, L.: Multi-fidelity Gaussian Process Regression for Computer Experiments. PhD dissertation, University of Paris-Diderot, Paris VII (2013)

  23. Le Gratiet, L.: Muficokriging: multi-fidelity co-kriging models. R package version 1.2 (2014)

  24. Le Gratiet, L., Cannamela, C.: Cokriging-Based Sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes. Technometrics 57(3), 418–427 (2015). doi:10.1080/00401706.2014.928233

    Article  Google Scholar 

  25. Le Ravalec, M.: Optimizing well placement with quality maps derived from multi-fidelity meta-models. In: Paper Presented at the EAGE Annual Conference & Exhibition, Copenhagen, Denmark. doi:10.2118/154416-MS(2012)

  26. Le Ravalec, M., Noetinger, B., Hu, L.: The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning gaussian simulations. Math. Geol. 32, 701–723 (2000). doi:10.1023/A:1007542406333

    Article  Google Scholar 

  27. Loève, M.: Probability Theory, vol. I–II. Springer, New York (1978)

  28. Mardia, K. V., Marshall, R. J.: Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71(1), 135–146 (1984)

    Article  Google Scholar 

  29. Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of Sobol indices for the Gaussian process metamodel. Reliab. Eng. Syst. Safe. 94, 742–751 (2009). doi:10.1016/j.ress.2008.07.008

    Article  Google Scholar 

  30. Marrel, A., Perot, N., Mottet, C.: Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators. Stoch. Env. Res. Risk A. 29, 959–974 (2015). doi:10.1007/s00477-014-0927-y

    Article  Google Scholar 

  31. Matérn, B.: Spatial Variation. Springer, New York (1986)

    Book  Google Scholar 

  32. Mckay, M. D., Beckman, R. J., Conover, W. J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979). doi:10.2307/1268522

    Google Scholar 

  33. Qian, P. Z. G., Wu, C. F. J.: Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50, 192–204 (2008). doi:10.1198/004017008000000082

    Article  Google Scholar 

  34. Roustant, O., Ginsbourger, D., Deville, Y.: Dicekriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J. Stat. Softw. 51(1), 1–55 (2012). doi:10.18637/jss.v051.i01

    Article  Google Scholar 

  35. Sacks, J., Welch, W. J., Mitchell, T. J., Wynn, H. P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989). doi:10.1214/ss/1177012413

    Article  Google Scholar 

  36. Santner, T. J., Williams, B. J., Notz, W.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

    Book  Google Scholar 

  37. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Tarantola, S.: Global Sensitivity Analysis: the Primer. Wiley, Chichester (2008)

    Google Scholar 

  38. Scheidt, C., Zabalza-Mezghani, I., Feraille, M., Collombier, D.: Toward a reliable quantification of uncertainty on production forecasts : adaptive experimental design. Oil Gas Sci. Technol. 62, 207–224 (2007). doi:10.2516/ogst:2007018

    Article  Google Scholar 

  39. Sobol’, I. Y. M.: On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie 2(1), 112–118 (1990)

    Google Scholar 

  40. Wackernagel, H.: Multivariate Geostatistics: an Introduction with Applications. Springer, Berlin (2003)

    Book  Google Scholar 

  41. **ao, M., Breitkopf, P., Coelho, R. F., Knopf-Lenoir, C., Sidorkiewicz, M., Villon, P.: Model reduction by CPOD and Kriging. Struct. Multidiscip. O. 41(4), 555–574 (2010). doi:10.1007/s00158-009-0434-9

    Article  Google Scholar 

  42. Yeten, B., Castellini, A., Guyaguler, B., Chen, W. H.: a comparison study on experimental design and response surface methodologies. In: Paper SPE 93347 presented at SPE Reservoir Simulation Symposium, Houston, Texas, USA, 31 January–2 February. doi:10.2118/93347-MS (2005)

  43. Zubarev, D. I.: Pros and Cons of Applying Proxy-models as a Substitute for Full Reservoir Simulations. doi:10.2118/124815-MS (2009)

  44. PUNQ-S3 webpage: https://www.imperial.ac.uk/engineering/departments/earth-science/research/research-groups/perm/standard-models/ https://www.imperial.ac.uk/engineering/departments/earth-science/research/research-groups/perm/standard-models/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Thenon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thenon, A., Gervais, V. & Ravalec, M.L. Multi-fidelity meta-modeling for reservoir engineering - application to history matching. Comput Geosci 20, 1231–1250 (2016). https://doi.org/10.1007/s10596-016-9587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9587-y

Keywords

Navigation