Log in

Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Most practical reservoir simulation studies are performed using the so-called black oil model, in which the phase behavior is represented using solubilities and formation volume factors. We extend the multiscale finite-volume (MSFV) method to deal with nonlinear immiscible three-phase compressible flow in the presence of gravity and capillary forces (i.e., black oil model). Consistent with the MSFV framework, flow and transport are treated separately and differently using a sequential implicit algorithm. A multiscale operator splitting strategy is used to solve the overall mass balance (i.e., the pressure equation). The black-oil pressure equation, which is nonlinear and parabolic, is decomposed into three parts. The first is a homo geneous elliptic equation, for which the original MSFV method is used to compute the dual basis functions and the coarse-scale transmissibilities. The second equation accounts for gravity and capillary effects; the third equation accounts for mass accumulation and sources/ sinks (wells). With the basis functions of the elliptic part, the coarse-scale operator can be assembled. The gravity/capillary pressure part is made up of an elliptic part and a correction term, which is computed using solutions of gravity-driven local problems. A particular solution represents accumulation and wells. The reconstructed fine-scale pressure is used to compute the fine-scale phase fluxes, which are then used to solve the nonlinear saturation equations. For this purpose, a Schwarz iterative scheme is used on the primal coarse grid. The framework is demonstrated using challenging black-oil examples of nonlinear compressible multiphase flow in strongly heterogeneous formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2(3), 421–439 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arbogast, T.: Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase darcy flow. Comput. Geosci. 6, 453–481 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arbogast, T., Bryant, S.L.: A two-scale numerical subgrid technique for waterflood simulations. SPE J. 7, 446–457 (2002)

    Google Scholar 

  4. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Elsevier, Amsterdam (1979)

    Google Scholar 

  5. Chen, Y., Durlofsky, L.J., Gerritsen, M., Wen, X.H.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)

    Article  Google Scholar 

  6. Chen, Z., Hou, T.Y.: A mixed finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 72, 541–576 (2002)

    Article  MathSciNet  Google Scholar 

  7. Chen, Z., Yue, X.: Numerical homogenization of well singularities in the flow transport through heterogeneous porous media. Multiscale Model. Simul. 1(2), 260–303 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Christie, M.A., Blunt, M.J.: Tenth SPE Comparative solution project: a comparison of upscaling techniques. SPE Reserv. Eng. 4(4), 308–317 (2001)

    Google Scholar 

  9. Craft, B., Hawkins, M.F.: Petroleum Reservoir Engineering. Prentice-Hall, Englewood Cliffs (1959)

    Google Scholar 

  10. Dagan, G.: Flow and Transport in Porous Formations. Springer, New York (1989)

    Google Scholar 

  11. Deutsch, C.V., Journel, A.G.: GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, New York (1998)

    Google Scholar 

  12. Efendiev, Y., Wu, X.: Multiscale finite element methods for the problems with highly oscillatory coefficients. Numer. Math. 90, 459–486 (2001)

    Article  MathSciNet  Google Scholar 

  13. Gautier, Y., Blunt, M.J., Christie, M.A.: Nested gridding and streamline-based simulation for fast reservoir performance predicition. Comput. Geosci. 4, 295–320 (1999)

    Article  Google Scholar 

  14. Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comp. Phys. 134, 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jenny, P., Lee, S.H., Tchelepi, H.A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)

    Article  MATH  Google Scholar 

  16. Jenny, P., Lee, S.H., Tchelepi, H.A.: Adaptive multiscale finite volume method for multi-phase flow and transport. Multiscale Model. Simul. 3, 50–64 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jenny, P., Lee, S.H., Tchelepi, H.A.: Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. J. Comput. Phys. 217, 627–641 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Juanes, R., Dub, F.-X.: A locally-conservative variational multiscale method for the simulation of porous media flow with multiscale source terms. Comput. Geosci. (2008) doi:10.1007/s10596-007-9070-x

  19. Lee, S.H., Tchelepi, H.A., Jenny, P., DeChant, L.J.: Implementation of a flux-continuous finite difference method for stratigraphic, hexahedron grids. SPE J. 7, 267–277 (2002)

    Google Scholar 

  20. Lunati, I., Jenny, P.: Multi-scale finite-volume method for multi-phase flow with gravity. Comput. Geosci. (2008) doi:10.1007/s10596-007-9071-9

  21. Lunati, I., Jenny, P.: Multi-scale finite-volume method for compressible multi-phase flow in porous media. J. Comput. Phys. 216, 616–636 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier, Amsterdam (1977)

    Book  Google Scholar 

  23. Tchelepi, H.A., Jenny, P., Lee, S.H., Wolfsteiner, C.: Adaptive multiscale finite volume framework for reservoir simulation. SPE J. 12, 188–195 (2007)

    Google Scholar 

  24. Watts, J.W.: A compositional formulation of the pressure and saturation equations. In: Proceedings of 7th SPE Symposium on Reservoir Simulation: SPE 12244, pp. 113–122, San Francisco, CA, 15–18 November 1983

  25. Wolfsteiner, C., Lee, S.H., Tchelepi, H.A.: Modeling of wells in the multiscale finite volume method for subsurface flow simultion. Multiscale Model. Simul. 5(3), 900–917 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Tchelepi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Wolfsteiner, C. & Tchelepi, H.A. Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity. Comput Geosci 12, 351–366 (2008). https://doi.org/10.1007/s10596-007-9069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-007-9069-3

Keywords

Navigation