Log in

A review of current issues in air pollution modeling and simulation

  • Review Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Air pollution modeling is now a mature field, and comprehensive numerical models (the chemistry-transport models) are used in many applications. This article aims at reviewing the main issues from the point of view of applied mathematics and computational physics (as viewed by the author). We address topics such as subgrid parameterization, numerical algorithms with a focus on aerosol simulation, data assimilation and inverse modeling, reduction of high-dimensional models and propagation of uncertainties. Even if this article is strictly related to air pollution modeling, many issues and methods can be extended to dispersion of tracers in other media (for instance, water).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babovsky, H.: On a Monte Carlo scheme for Smoluchowski’s coagulation equation. Monte Carlo Methods Appl. 5(1), 1–18 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartnicki, J.: Nonlinear effects in the source-receptor matrices computed with the EMEP Eulerian acid deposition model. Technical Report 4/2000, EMEP/MSC-W (2000)

  3. Bennett, A.: Inverse Modeling of the ocean and atmosphere. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  4. Bergamaschi, P., Hein, R., Heimann, M., Crutzen, P.: Inverse modeling of the global CO cycle. 1. Inversion of CO mixing ratios. J. Geophys. Res. 105(D2), 1909–1927 (2000)

    Google Scholar 

  5. Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., Ramonet, M., Peteres, W., Dlugokencky, E.: Inverse modelling of national and european CH4 emissions using the atmospheric zoom model TM5. Atmos. Chem. Phys. 5, 2431–2460 (2005)

    Article  Google Scholar 

  6. Berkooz, G., Holmes, P., Lumley, J.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 539–575 (1993)

  7. Berkvens, P., Botchev, M., Krol, M., Peters, W., Verwer, J.: Solving vertical transport and chemistry in air pollution models. In: Chock, D., Carmichael, G. (eds.): Atmospheric Modeling, Springer, Berlin Heidelberg New York (2002)

    Google Scholar 

  8. Berliner, L., Lu, Z., Snyder, C.: Statistical design for adaptive weather observations. J. Atmos. Sci. 56, 2536–2552 (1999)

    Google Scholar 

  9. Binkowski, F., Roselle, S.: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component. 1. Model description. J. Geophys. Res. 108(D6-4183), DOI: 10.1029/2001JD001409 (2003)

  10. Bocquet, M.: Reconstruction of an atmospheric tracer source using the principle of maximum entropy I : Theories. Quart. J. Roy. Meteorol. Soc. 131(Part B(610)) (2005a)

  11. Bocquet, M.: Reconstruction of an atmospheric tracer source using the principle of maximum entropy II : Applications. Quart. J. Roy. Meteorol. Soc. 131(Part B(610)) (2005b)

  12. Boutahar, J.: Reduction and evaluation of uncertainties in chemistry-transport models. Ph.D. thesis, ENPC. In French (2004)

  13. Boutahar, J., Lacour, S., Mallet, V., Quélo, D., Roustan, Y., Sportisse, B.: Development and validation of a fully modular platform for numerical modelling of air pollution: Polair3D. Int. J. Environ. Pollut. 22(1-2) (2004)

  14. Boutahar, J., Sportisse, B.: Reduction methods for atmospheric chemistry. In: Global and Regional Atmospheric Modeling Meeting, pp. 133–139. University of Aveiro, Portugal (2002)

    Google Scholar 

  15. Byrne, G., Hindmarsh, A.: Stiff ODE solvers: a review of current and coming attractions. J. Comp. Phys. 70, 1–62 (1987)

    MATH  MathSciNet  Google Scholar 

  16. Byun, D., Lee, S.: Numerical solution of trace species advection under non-uniform density distribution: experiment with two-dimensional linear flows. In: Chock, D., Carmichael, G. (eds.): Atmospheric Modeling, pp. 109–151. Springer, Berlin Heidelberg New York (2002)

    Google Scholar 

  17. Capaldo, K., Pilinis, C., Pandis, S.: A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models. Atmos. Environ. 34, 3617–3627 (2000)

    Google Scholar 

  18. Carmichael, G., et al.: Sensitivity analysis for atmospheric chemistry models via automatic differentiation. Atmos. Environ. 31(3), 475–489 (1997)

    MathSciNet  Google Scholar 

  19. Cesa-Bianchi, N., Long, P.M., Warmuth, M.K.: Worst-case quadratic loss bounds for prediction using linear functions and gradient descent. IEEE Trans. Neural Networks 7(3), 604–619 (1996)

    Google Scholar 

  20. Chang, M., Hartley, D., Cardelino, C., Chang, W.-L.: Inverse modeling of biogenic emissions. Geophys. Res. Lett. 23, 3007 (1996)

    Google Scholar 

  21. Chang, M., Hartley, D., Cardelino, C., Haas-Laursen, D., Chang, W.-L.: On using inverse methods for resolving emissions with large spatial inhomogeneities. J. Geophys. Res. 102(D13), 16023–16036 (1997)

    Google Scholar 

  22. Constantinescu, E.M., Sandu, A., Chai, T., Carmichael, G.R.: Assessment of ensemble-based chemical data assimilation in an idealized setting. Atmos. Environ. 41(1), 18–36 (2007)

    Google Scholar 

  23. Dabdub, D., Nguyen, K.: Semi-lagrangian flux scheme for the solution of the aerosol condensation/evaporation equation. Aerosol Sci. Tech. 36, 407–418 (2002)

    Google Scholar 

  24. Daescu, D., Sandu, A., Carmichael, G.: Direct and adjoint sensitivity analysis of chemical kinetics with KPP: II Numerical validation and applications. Atmos. Environ. (2003)

  25. Debry, E.: Numerical simulation of an atmospheric aerosol distribution. Ph.D. thesis, ENPC, CEREA. In French (2004)

  26. Debry, E., Fahey, K., Sartelet, K., Sportisse, B., Tombette, M.: A new size resolved aerosol model: SIREAM. Atmos. Chem. Phys. Discuss. 6, 11845–11875 (2006)

    Google Scholar 

  27. Debry, E., Sportisse, B.: Numerical simulation of the General Dynamics Equation (GDE) for aerosols with two collocation methods. Appl. Numer. Math. (In press)

  28. Debry, E., Sportisse, B.: Reduction of the condensation/evaporation dynamics for atmospheric aerosols: theoretical and numerical investigation of hybrid methods. J. Aerosol Sci. 37(8), 950–966 (2006b)

    Google Scholar 

  29. Debry, E., Sportisse, B.: Solving aerosol coagulation with size-binning methods. Appl. Numer. Math. (In press)

  30. Debry, E., Sportisse, B., Jourdain, B.: A stochastic approach for the numerical simulation of the general dynamics equation for aerosols. J. Comp. Phys. 184, 649:689 (2003)

    MATH  Google Scholar 

  31. Dhaniyala, S., Wexler, A.: Numerical schemes to model condensation and evaporation of aerosols. Atmos. Environ. 30(6), 919–927 (1995)

    Google Scholar 

  32. Djouad, R., Audiffren, N., Sportisse, B.: Sensitivity analysis using automatic differentiation applied to a multiphase chemical mechanism. Atmos. Environ. 37(22), 3029–3038 (2003a)

    Google Scholar 

  33. Djouad, R., Sportisse, B.: Partitioning techniques for reduction in chemical kinetics. APLA: an automatic partitioning and lum** algorithm. Appl. Numer. Math. 43(4), 383–398 (2002)

    MATH  MathSciNet  Google Scholar 

  34. Djouad, R., Sportisse, B.: Solving reduced models in Air pollution modelling. Appl. Numer. Math. 44(1), 49–61 (2003)

    MATH  MathSciNet  Google Scholar 

  35. Djouad, R., Sportisse, B., Audiffren, N.: Numerical simulation of aqueous-phase atmospheric models : Use of a non-autonomous Rosenbrock method. Atmos. Environ. 36, 873–879 (2002)

    Google Scholar 

  36. Djouad, R., Sportisse, B., Audiffren, N.: Reduction of multiphase atmospheric chemistry. J. Atmos. Chem. 46, 131–157 (2003b)

    Google Scholar 

  37. Domilovskii, E., Lushnikov, A., Piskunov, V.: Monte Carlo simulation of coagulation processes. Dokl. Akad. Nauk SSSR, Ser. Phys. Chem. 240(1), (1978)

  38. Eibeck, A., Wagner, W.: Stochastic particle approximations for Smoluchowski’s coagulation equation. Technical report, Weierstrass-Institut for Applied Analysis and Stochastics. Preprint No. 585 (2000)

  39. Elbern, H., Schmidt, H.: A four dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling. J. Geophys. Res. 104(18), 583–18598 (1999)

    Google Scholar 

  40. Elbern, H., Schmidt, H.: Ozone episode analysis by four dimensional variational chemistry data assimilation. J. Geophys. Res. 106, 3569–3590 (2001)

    Google Scholar 

  41. Elbern, H., Schmidt, H., Ebel, A.: Variational data assimilation for tropospheric chemistry modeling. J. Geophys. Res. 102, 15967–15985 (1997)

    Google Scholar 

  42. Elbern, H., Schmidt, H., Talagrand, O., Ebel, E.: 4D variational data assimilation with an adjoint air quality model for emission analysis. Environ. Model. Softw. 15, 539–548 (2000)

    Google Scholar 

  43. Fife, P.: Mathematical aspects of reacting and diffusing systems, vol. 28. Springer, Berlin Heidelberg New York (1979)

    Google Scholar 

  44. Fiore, A., Jacob, D.: Application of empirical orthogonal functions to evaluate ozone simulations with regional and global models. J. Geophys. Res. 108(D14) (2003)

  45. Frohn, L., Christensen, J., Brandt, J.: Development of a high-resolution nested air pollution model. J. Comp. Phys. 179, 68–94 (2002)

    MATH  Google Scholar 

  46. Galmarini, S., Bianconi, R., Klug, W., Mikkelsen, T., Addis, R., Andronopoulos, S., Astrup, P., Baklanov, A., Bartniki, J., Bartzis, J.C., et al.: Ensemble dispersion forecasting – Part I: concept, approach and indicators. Atmos. Environ. 38(28), 4607–4617 (2004)

    Google Scholar 

  47. Gelbard, F., Seinfeld, J.: Numerical solution of the dynamic equation for particulate systems. J. Comp. Phys. 28, 357–375 (1977)

    MathSciNet  Google Scholar 

  48. Gelbard, F., Seinfeld, J.: The general dynamics equation for aerosols. J. Colloid Interface Sci. 68(2), 363–382 (1979)

    Google Scholar 

  49. Giering, R., Kaminski, T.: Recipes for adjoint code construction. ACM Trans. Math. Software 24(4), 437–474 (1998)

    MATH  Google Scholar 

  50. Gong, Cho: A numerical scheme for the integration of the gas-phase chemical rate equations in 3D atmospheric models. Atmos. Environ. 27A, 2591–2611 (1993)

    Google Scholar 

  51. Graf, J., Moussiopoulos, N.: Intercomparison of two models for the dispersion of chemically reacting pollutants. Beitr. Phys. Atmos. 64(1), 13–25 (1991)

    Google Scholar 

  52. Griewank, A., Walther, A.: Revolve: An implementation of checkpoint for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Software (1999)

  53. Griffin, R., Dabdub, D., Seinfeld, J.: Secondary organic aerosol 1. Atmospheric chemical mechanism for production of molecular constituents. J. Geophys. Res. 107(D17), (2002)

  54. Hanna, S.R., Lu, Z., Frey, H.C., Wheeler, N., Vukovich, J., Arunachalam, S., Fernau, M., Hansen, D.A.: Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain. Atmos. Environ. 35(5), 891–903 (2001)

    Google Scholar 

  55. He, S., et al: Application of ADIFOR for air pollution model sensitivity studies. Environ. Model. Softw. 15, 475–489 (2000)

    Google Scholar 

  56. Heard, A., Pilling, M., Tomlin, A.: Mechanism reduction techniques applied to tropospheric chemistry. Atmos. Environ. 32(6), 1059–1073 (1998)

    Google Scholar 

  57. Hertel, O., Berkowicz, R., Christensen, J.: Test of two numerical schemes for use in atmospheric transport-chemistry models. Atmos. Environ. 27A(16), 2591–2611 (1993)

    Google Scholar 

  58. Higdon, R., Bennett, A.: Stability analysis of operator splitting for large scale ocean modeling. J. Comp. Phys. 123, 311–329 (1996)

    MATH  MathSciNet  Google Scholar 

  59. Hourdin, F., Issartel, J.-P.: Sub-surface nuclear tests monitoring through the CTBT133 Xe network. Geophys. Res. Lett. 27, 2245–2248 (2000)

    Google Scholar 

  60. Hu, Y., Odman, M., Russel, A.: Mass conservation in the CMAQ model. Atmos. Environ. 40, 1199–1204 (2006)

    Google Scholar 

  61. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Vol. 33 of Springer Series in Computational Mathematics. Springer, Berlin Heidelberg New York (2003)

    Google Scholar 

  62. Jacobson, M., Turco, R.: Simulating condensational growth, evaporation and coagulation of aerosols using a combined moving and stationary size grid. Aerosol Sci. Tech. 22, 73–92 (1995)

    Google Scholar 

  63. Jacobson, M., Turco, R., Jensen, E., Toon, O.: Modeling coagulation among particles of different composition and size. Atmos. Environ. 28(7), 1327–1338 (1994)

    Google Scholar 

  64. Jay, L., Sandu, A., Potra, F., Carmichael, G.: Improved QSSA methods for atmospheric chemistry integration. SIAM J. Sci. Comp. (1997)

  65. Kalachev, L., Field, R.: Reduction of a model describing ozone oscillations in the troposphere: example of an algorithmic approach to model reduction in atmospheric chemistry. J. Atmos. Chem. 39, 65–93 (2001)

    Google Scholar 

  66. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  67. Karamchandani, P., Santos, L., Sykes, I., Zhang, Y., Tonne, C., Seigneur, C.: Development and application of a state-of-the-science reactive plume model. Environ. Sci. Technol. 34, 870–880 (2000)

    Google Scholar 

  68. Kim, Y., Seinfeld, J.: Simulation of multicomponent aerosol condensation by the moving sectional method. J. Colloid Interface Sci. 135(1), 185–199 (1990)

    Google Scholar 

  69. Krishnamurti, T., Kishtawal, T., LaRow, T., Bachiocchi, D., Zhang, Z., Williford, C., Gadhil, S., Surendran, S.: Improved weather and seasonal climate forecasts from multi-model superensemble. Science 285, 1548–1550 (1999)

    Google Scholar 

  70. Lamb, R.: Note on the application of K-theory to diffusion problems involving nonlinear chemical reactions. Atmos. Environ. 7, 257–263 (1973)

    Google Scholar 

  71. Lanser, L., Verwer, J.: Analysis of operator splitting for advection–diffusion–reaction problems from air pollution modelling. In: Proceedings 2nd Meeting on Numerical methods for differential equations (1998)

  72. Larson, V., Golaz, J.-C., Jiang, H., Cotton, W.: Supplying local microphyisics parameterizations with information about subgrid variability: Latin Hypercube sampling. J. Atmos. Sci. 62, 4010–4026 (2005)

    Google Scholar 

  73. Lee, S., Yoon, S., Byun, D.: The effect of mass inconsistency of the meteorological field generated by a common meteorological model on air quality modeling. Atmos. Environ. 38, 2917–2926 (2004)

    Google Scholar 

  74. Louis, J.: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Lay. Meteorol. 17, 197–202 (1979)

    Google Scholar 

  75. Lovas, T., Mastorakos, E., Goussis, D.: Reduction of the RACM scheme using computational singular perturbation analysis. J. Geophys. Res. 111(D13302), (2006)

  76. Lowe, R., Tomlin, A.: Low-dimensional manifolds and reduced chemical models for tropospheric chemistry simulations. Atmos. Environ. 34, 2425–2436 (2000)

    Google Scholar 

  77. Mallet, V., Sportisse, B.: 3D Chemistry-Transport Model Polair3D: numerical issues, validation and automatic-differentiation strategy. Atmos. Chem. Phys. Discuss. (1), 1371–1392 (2004)

  78. Mallet, V., Sportisse, B.: A comprehensive study of ozone sensitivity with respect to emissions over Europe with a chemistry-transport model. J. Geophys. Res. 110(D22), (2005)

  79. Mallet, V., Sportisse, B.: Ensemble-based air quality forecasts: a multi-model approach applied to ozone. J. Geophys. Res. 111(D18), 18302 (2006a)

    Google Scholar 

  80. Mallet, V., Sportisse, B.: Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: an ensemble approach applied to ozone modeling. J. Geophys. Res. 111(D01302) (2006b)

  81. Marchuk, G.: Mathematical models in environmental problems, vol. 16. North Holland, Amsterdam (1986)

    Google Scholar 

  82. McRae, G., Goodin, W., Seinfeld, J.: Numerical solution of the atmospheric diffusion equation for chemically reacting flows. J. Comp. Phys. 45, 1–42 (1982)

    MATH  MathSciNet  Google Scholar 

  83. Meirink, J., Eskes, H., Goede, P.: Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling. Atmos. Chem. Phys. Discuss. 5, 9405–9445 (2005)

    Google Scholar 

  84. Müller, F.: Splitting error estimation for microphysical-multiphase chemical systems in meso-scale air quality models. Atmos. Environ. 5749–5764 (2001)

  85. Molemaker, M., Vila-Guerau de Arellano, J.: Control of chemical reactions by convective turbulence in the boundary layer. J. Atmos. Sci. 55, 568–579 (1998)

    Google Scholar 

  86. Mott, D., Oran, E., Van Leer, B.: A Quasi-Steady-State solver for the stiff Ordinary Differential Equations of reaction kinetics. J. Comp. Phys. 164, 407–428 (2000)

    MATH  MathSciNet  Google Scholar 

  87. Neophytou, M., Goussis, D., Van Loon, M., Mastorakos, E.: Reduced chemical mechanisms for atmospheric pollution using computational singular perturbation analysis. Atmos. Environ. 38, 3661–3673 (2004)

    Google Scholar 

  88. Nguyen, K., Dabdub, D.: Development and analysis of a non-splitting solution for three-dimensional air quality models. Atmos. Environ. 37, 3741–3748 (2003)

    Google Scholar 

  89. Odman, M., Russel, A.: Mass conservative coupling of non-hydrostatic meteorological models with air quality models. In: Gryning, S., Batchvarova, E. (eds.): Air Pollution Modeling and Its Applications, pp. 651–660. Plenum Press, New York (2000)

    Google Scholar 

  90. Pagowski, M., Grell, G.A., McKeen, S.A., Dévényi, D., Wilczak, J.M., Bouchet, V., Gong, W., McHenry, J., Peckham, S., McQueen, J., Moffet, R., Tang, Y.: A simple method to improve ensemble-based ozone forecasts. Geophys. Res. Lett. 32, (2005)

  91. Pandis, S., Seinfeld, J.: Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry. J. Geophys. Res. 94(D1), 1105–1126 (1989)

    Google Scholar 

  92. Petersen, A., Spee, E., Van Dop, H., Hundsdorfer, W.: An evaluation and intercomparison of four new advection schemes for use in global chemistry models. J. Geophys. Res. 103, 19253–19270 (1998)

    Google Scholar 

  93. Pham, D.: A singular evolutive interpolated Kalman filter for data assimilation in oceanography. Technical Report RT 163, LMC/IMAG (1996)

  94. Pham, D., Verron, J., Roubaud, M.C.: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Marine Syst. 16, 323–340 (1998)

    Google Scholar 

  95. Pilinis, C.: Derivation and numerical solution of the species mass distribution equations for multicomponent particulate systems. Atmos. Environ. 24A(7), 1923–1928 (1990)

    Google Scholar 

  96. Pilinis, C., Capaldo, K., Nenes, A., Pandis, S.: MADM – a new Multi-component aerosol dynamic model. Aerosol Sci. Tech. 32, 482–502 (2000)

    Google Scholar 

  97. Preussner, P., Brand, K.: Application of a semi-implicit Euler method to mass action kinetics. Chem. Eng. Sci. 36(10), 1633–1641 (1981)

    Google Scholar 

  98. Pun, B., Griffin, R., Seigneur, C., Seinfeld, J.: Secondary Organic Aerosol 2. Thermodynamic model for gas/particle partitioning of molecular constituents. J. Geophys. Res. 107(D17), (2002)

  99. Quélo, D., Mallet, V., Sportisse, B.: Inverse modeling of NO x emissions at regional scale over Northern France. Preliminary investigation of the second-order sensitivity. J. Geophys. Res. 110(D24310), (2005)

  100. Quélo, D., Sportisse, B., Isnard, O.: Data assimilation for short-range dispersion of radionuclides: a case study for second-order sensitivity. J. Environ. Radioact. 84, 393–408 (2005)

    Google Scholar 

  101. Rabitz, H., Alis, O.: General foundations of high-dimensional model representations. J. Math. Chem. 25, 197–223 (1999)

    MATH  MathSciNet  Google Scholar 

  102. Ramabhadran, T., Peterson, T., Seinfeld, J.: Dynamics of Aerosol Coagulation and Condensation. AIChe J. 22(5), 840–851 (1976)

    Google Scholar 

  103. Rodriguez, M., Dabdub, D.: Monte Carlo uncertainty and sensitivity analysis of the CACM chemical mechanism. J. Geophys. Res. 108(D15), (2003)

  104. Roustan, Y., Bocquet, M.: Sensitivity analysis for mercury over Europe. J. Geophys. Res. 111(D14304), (2006)

  105. Russell, A., Dennis, R.: NARSTO critical review of photochemical models and modeling. Atmos. Environ. 34, 2283–2234 (2000)

    Google Scholar 

  106. Sandu, A.: Discretizing Aerosol Dynamics with B-Splines. Technical report, Michigan Technological University, Houghton, MI 49931 (2001a)

  107. Sandu, A.: Positive numerical integration methods for chemical kinetic systems. J. Comp. Phys. 170, 1–14 (2001b)

    MathSciNet  Google Scholar 

  108. Sandu, A.: Targeted Observations for Atmospheric Chemistry and Transport Models. In: International Conference for Computational Science (ICCS-2006) (2006)

  109. Sandu, A., Borden, C.: A framework for the numerical treatment of aerosol dynamics. Appl. Numer. Math. 45, 475–497 (2003)

    MATH  MathSciNet  Google Scholar 

  110. Sandu, A., Daescu, D., Carmichael, G.: Direct and Adjoint sensitivity analysis of chemical kinetics with KPP: I Theory and software tools. Atmos. Environ. (2003)

  111. Sandu, A., Daescu, D., Carmichael, G., Chai, T.: Adjoint sensitivity analysis of regional air quality models. J. Comp. Phys. 204, 222–252 (2005)

    MATH  Google Scholar 

  112. Sandu, A., Potra, F., Carmichael, G., Damian, V.: Efficient implementation of fully implicit methods for atmospheric chemical kinetics. J. Comp. Phys. 129, 101–110 (1996)

    MATH  Google Scholar 

  113. Sandu, A., Verwer, J., Blom, J., Spee, E., Carmichael, G.: Benchmarking stiff ODEs solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmos. Environ. 31, 3459–3472 (1997a)

    Google Scholar 

  114. Sandu, A., Verwer, J., Van Loon, M., Carmichael, G., Potra, F., Dabdub, D., Seinfeld, J. : Benchmarking stiff ODEs solvers for atmospheric chemistry problems I: implicit versus explicit. Atmos. Environ. 31, 3151–3166 (1997b)

    Google Scholar 

  115. Sartelet, K.N., Hayami, H., Albriet, B., Sportisse, B.: Development and preliminary validation of a modal aerosol model for tropospheric chemistry: MAM. Aerosol Sci. Tech. 40(2), 118–127 (2005)

    Google Scholar 

  116. Segers, A.: Data assimilation in atmospheric chemistry models using Kalman filtering. Ph.D. thesis, Delft University (2002)

  117. Seigneur, C., Stephanopoulos, G., Carr Jr, R.: Dynamic sensitivity analysis of chemical reaction systems. Chem. Eng. Sci. 37(6), 845–853 (1982)

    Google Scholar 

  118. Seinfeld, J., Pandis, S.: Atmospheric Chemistry and Physics. Wiley-Interscience, New York (1998)

    Google Scholar 

  119. Shorter, J., Ip, P.C.: An efficient chemical kinetics solver using high dimensional model representation. J. Phys. Chem. (1999) 103, 7192–7198 (1999)

    Google Scholar 

  120. Sirkes, Z., Tziperman, E.: Finite difference of adjoint or adjoint of finite difference? Mon. Weather Rev. 125, 3373–3378 (1997)

    Google Scholar 

  121. Sommeijer, B., Van der Houwen, P., Verwer, J.: On the treatment of time-dependent boundary conditions in splitting methods for parabolic differential equations. Int. J. Num. Met. Eng. 17, 335–346 (1981)

    MATH  MathSciNet  Google Scholar 

  122. Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comp. Phys. 161, 140–168 (2000)

    MATH  MathSciNet  Google Scholar 

  123. Sportisse, B.: Box models versus Eulerian models in air pollution modeling. Atmos. Environ. 35, 173–178 (2001)

    Google Scholar 

  124. Sportisse, B.: A review of parameterizations for modeling dry deposition and scavenging of radionuclides. Atmos. Environ. (In press)

  125. Sportisse, B., Bencteux, G., Plion, P.: Method of lines versus operator splitting methods for reaction–diffusion systems in air pollution modelling. Environ. Model Softw. 15, (2000)

  126. Sportisse, B., Djouad, R.: Reduction of chemical kinetics in air pollution modelling. J. Comp. Phys. 164, 354–376 (2000)

    MATH  MathSciNet  Google Scholar 

  127. Sportisse, B., Djouad, R.: Mathematical investigation of mass transfer for atmospheric pollutants into a fixed droplet with aqueous chemistry. J. Geophys. Res. 108(D2), 4073 (2003)

    Google Scholar 

  128. Sportisse, B., Djouad, R.: Use of Proper Orthogonal Decompositions for the reduction of atmospheric chemistry. J. Geophys. Res. (In press)

  129. Sportisse, B., Du Bois, L.: Numerical and theoretical investigation of a simplified model for the parameterization of below-cloud scavenging by falling raindrops. Atmos. Environ. 36, 5719–5727 (2002)

    Google Scholar 

  130. Sportisse, B., Quélo, D.: Observational network design, adaptive observations and targeting strategies in atmospheric data assimilation: sketch of a methodological review. In: INRIA-CEA-EDF Summer School on Data Assimilation for Geophysical flows (2002)

  131. Sportisse, B., Quélo, D., Mallet, V.: Impact of mass consistency errors for atmospheric dispersion. Atmos. Environ. (In press)

  132. Srivastava, R., Mc Rae, D., Odman, M.: Simulation of dispersion of a power plant plume using an adaptive grid algorithm. Atmos. Environ. 35, 4801–4818 (2001)

    Google Scholar 

  133. Stockwell, W., Kirchner, F., Kuhn, M., Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 95(D10), 16343–16367 (1997)

    Article  Google Scholar 

  134. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    MATH  MathSciNet  Google Scholar 

  135. Stratton, D., Gans, J., Williams, E.: Coagulation algorithms with size binning. J. Comp. Phys. 112, 364–369 (1994)

    MATH  Google Scholar 

  136. Sun, P.: A pseudo non-time splitting method in air quality modeling. J. Comp. Phys. 127, 152–157 (1996)

    MATH  Google Scholar 

  137. Tarantola, A.: Inverse Problem Theory. Elsevier, Amsterdam (1987)

    MATH  Google Scholar 

  138. Tatang, M., Pan, W., Prinn, R., McRae, G.: An efficient implementation for parametric uncertainty analysis of numerical geophysical models. J. Geophys. Res. 102, 21925–21932 (1997)

    Google Scholar 

  139. Tikhonov, A., Vasileva, A., Sveshnikov, A.: Differential equations. Springer, Berlin Heidelberg New York (1985)

    Google Scholar 

  140. Tomlin, A., Berzins, M., Ware, J., Smith, J., Pilling, M.: On the use of adaptative gridding methods for modelling chemical transport from multi-scales sources. Atmos. Environ. 31(18), 2945–2959 (1997)

    Google Scholar 

  141. Troen, I.B., Mahrt, L.: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Lay. Meteorol. 37, 129–148 (1986)

    Google Scholar 

  142. Tzivion, S., Reisin, T., Levin, Z.: A numerical solution of the kinetic collection equation using high spectral grid resolution : A proposed reference. J. Comp. Phys. 148, 527–544 (1999)

    MATH  MathSciNet  Google Scholar 

  143. Van Loon, M.: Numerical methods in smog prediction. Ph.D. thesis, Univ. Amsterdam (1996)

  144. Vasileva, A., Butuzov, V., Kalachev, L.: The boundary function method for singular perturbation problems. SIAMs Monographs (1994)

  145. Verlaan, M.: Efficient Kalman filtering algorithms for hydrodynamic models. Ph.D. thesis, TU Delft (1998)

  146. Verwer, J.: Gauss-Seidel iteration for stiff ODEs from chemical kinetics. SIAM J. Sci. Comp. 15, 1243–1250 (1994)

    MATH  MathSciNet  Google Scholar 

  147. Verwer, J., Blom, J., Hundsdorfer, W.: An implicit-explicit approach for atmospheric transport-chemistry problems. Appl. Numer. Math. 20, 191–209 (1996a)

    MATH  MathSciNet  Google Scholar 

  148. Verwer, J., Blom, J., Van Loon, M., Spee, E.: A comparison of stiff ODEs solvers for atmospheric chemistry problems. Atmos. Environ. 30, 49–58 (1996b)

    Google Scholar 

  149. Verwer, J., Hundsdorfer, W., Blom, J.: Numerical time integration for air pollution models. In: Proceedings of the Conference APMS’98 (1998)

  150. Verwer, J., Simpson, D.: Explicit methods for stiff ODEs from atmospheric chemistry. Appl. Numer. Math. 18, 413–430 (1995)

    MATH  Google Scholar 

  151. Verwer, J., Spee, E., Blom, J., Hundsdorfer, W.: A second order Rosenbrock method applied to photochemical dispersion problem. SIAM J. Sci. Comp. 20(4), 1456–1480 (1999)

    MATH  MathSciNet  Google Scholar 

  152. Verwer, J., Sportisse, B.: A note on Operator Splitting analysis in the stiff linear case. Technical Report MAS-R9830, CWI (1998)

  153. Verwer, J., Van Loon, M.: An evaluation of explicit Pseudo-Steady State Approximation schemes for stiff ODE systems from chemical kinetics. J. Comp. Phys. 113, 347–352 (1994)

    MATH  MathSciNet  Google Scholar 

  154. Vila-Guerau de Arellano, J., Dosio, A., Vinuesa, J., Holtslag, A., Galmarini, S. : The dispersion of chemically reactive species in the atmospheric boundary layer. Meteorol. Atmos. Phys. 87(23-38), (2004)

  155. Vinuesa, J.-F., Vila-Guerau de Arellano, J.: Fluxes and covariances of reacting scalars in the convective boundary layer. Tellus B 55(4), 935–949 (2003)

    Google Scholar 

  156. Vinuesa, J.-F., Vila-Guerau de Arellano, J.: Introducing effective reaction rates to account for the inefficient mixing of the convective boundary layer. Atmos. Environ. 39, 445–461 (2005)

    Google Scholar 

  157. Wang, S., Levy II, H., Li, G., Rabitz, H.: Fully equivalent operational models for atmospheric chemical kinetics within global chemistry-transport models. J. Geophys. Res. 104(D23), 30417–30426 (1999)

    Google Scholar 

  158. Wang, Z., Navon, I., Le Dimet, F., Zou, X.: The second order adjoint analysis: theory and applications. Meteorol. Atmos. Phys. 50, 3–20 (1992)

    Google Scholar 

  159. Whitby, E., McMurry, P.: Modal aerosol dynamics modeling. Aerosol Sci. Tech. 27, 673–688 (1997)

    Google Scholar 

  160. Whitby, E., Stratmann, F., Wilck, M.: Merging and remap** modes in a modal aerosol dynamics models: a “Dynamic Mode Manager”. J. Aerosol Sci. 33, 623–645 (2002)

    Google Scholar 

  161. Williamson, D.: Time-split versus process-split coupling of parameterizations and dynamical core. J. Climate (2001)

  162. Wolke, R., Knoth, O.: An explicit-implicit numerical approach for atmospheric chemistry-transport modeling. Atmos. Environ. 32, 1785–1797 (1998)

    Google Scholar 

  163. Yanenko, N.: The method of fractional steps. Springer, Berlin Heidelberg New York (1971)

    MATH  Google Scholar 

  164. Yang, B., Pope, S.: An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry. Combust. Flame 112, 16–32 (1998)

    Google Scholar 

  165. Young, T., Boris, J.: A numerical technique for solving stiff ODE associated with the chemical kinetics of reaction flow problems. J. Phys. Chem. 81, 2424 (1977)

    Google Scholar 

  166. Zhang, Y., Bischof, C., Easter, R., Wu, P.: Sensitivity analysis of a mixed-phase chemical mechanism using automatic differentiation. J. Geophys. Res. 103(D15), 18953–18979 (1998a)

    Google Scholar 

  167. Zhang, Y., Bischof, C., Easter, R., Wu, P.: Sensitivity analysis of photochemical indicators for O3 chemistry using automatic differentiation. J. Atmos. Chem. 51, 1–41 (2005)

    MATH  Google Scholar 

  168. Zhang, Y., Seigneur, C., Seinfeld, J., Jacobson, M., Binkowski, F.: Simulation of Aerosol dynamic: A comparative review of algorithms used in air quality models. Aerosol Sci. Tech. 31, 487–514 (1999)

    Google Scholar 

  169. Zhang, Y., Seinfeld, J., Jacobson, M., Clegg, S., Binkowski, F.: A comparative review of inorganic aerosol thermodynamic equilibrium modules: Similarities, differences and their likely causes. Atmos. Environ. 34, 117–137 (2000)

    Google Scholar 

  170. Zlatev, Z.: Computer Treatment of Large Air Pollution Models. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sportisse.

Additional information

This article is based on a plenary talk given at SIAM Geosciences, Avignon, June 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sportisse, B. A review of current issues in air pollution modeling and simulation. Comput Geosci 11, 159–181 (2007). https://doi.org/10.1007/s10596-006-9036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-006-9036-4

Keywords

Navigation