Log in

Heterozygosity-fitness correlations within inbreeding classes: local or genome-wide effects?

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Marker-based studies of inbreeding may lead to an enhanced understanding of inbreeding depression in natural populations, which is a major concern in conservation genetics. Correlations between marker heterozygosity and variation in fitness-associated traits—‘heterozygosity-fitness correlations’ (HFCs)—are of particular importance and have been widely applied in natural populations. In partially inbred populations, HFCs can be driven by selection against inbred individuals and thus reflect inbreeding depression. However, other explanations for HFCs also exist, such as functional effects of the markers per se or that the markers reveal selection on linked fitness genes due to extended linkage disequilibrium (LD) in the population. Accordingly, HFCs do not only arise in partially inbred populations, they may also occur within inbreeding classes such as families, i.e. in situations when there is no variation in the inbreeding coefficient. In this study we focus on the importance of LD for within-family HFCs, thereby aiming at enhancing our general understanding of HFCs. For non-coding markers, within-family HFCs have been proposed to be caused in two ways: either by ‘local effects’ at linked fitness genes in LD with the markers, or by ‘general effects’ due to a correlation between proportion of heterozygous markers (H M ) and heterozygosity at genome-wide distributed fitness genes (H GW ). To evaluate these contrasting hypotheses for within-family HFCs, we analysed simulated data sets of sexually reproducing populations with varying levels of LD. The results confirmed that segregation induces variation in both H M and H GW at a fixed level of inbreeding; as expected, the variation in H M declined with increasing number of markers, whereas the variation in H GW declined with decreasing LD. However, less intuitively, there was no positive correlation between the variation in H M and H GW within inbreeding classes when the local component of H GW was accounted for (i.e. when the part of the chromosome in LD with the markers was excluded). This strongly suggests that within-family HFCs are not caused by general effects. Instead, our results support the idea that HFCs at a known level of inbreeding can be driven by local effects in populations with high to moderate LD. Note however that we define the local component of H GW as the part of the chromosomes in LD with the markers. This implies that when LD is high, the local component will consist of a substantial part of the genome and thus provides a rather ‘genome-wide’ view. We caution against routinely interpreting positive HFCs as evidence of inbreeding depression and non-significant HFCs as lack thereof, especially when few markers are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allendorf FW, Leary RF (1986) Heterozygosity and fitness in natural populations of animals. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, Massachusetts, pp 57–76

    Google Scholar 

  • Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Andrén H, Hansson B, et al (2006) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS One 1:e72

    Article  PubMed  Google Scholar 

  • Bierne N, Launey S, Naciri-Graven Y, Bonhomme F (1998) Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics 148:1893–1906

    PubMed  CAS  Google Scholar 

  • Bonnell ML, Selander RK (1974) Elephant seals: genetic variation and near to extinction. Science 184:908–909

    Article  Google Scholar 

  • Britten HB (1996) Meta-analyses of the association between multilocus heterozygosity and fitness. Evolution 50:2158–2164

    Article  Google Scholar 

  • Brooker MG, Rowley I, Adams M, Baverstock PA (1990) Promiscuity: an inbreeding avoidance mechanism in a socially monogamous species? Behav Ecol Sociobiol 26:191–199

    Google Scholar 

  • Bustamante CD, Nielsen R, Sawyer SA et al (2002) The cost of inbreeding in Arabidopsis. Nature 416:531–534

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty R (1981) The distribution of the number of heterozygous loci in an individual in natural populations. Genetics 98:461–466

    PubMed  Google Scholar 

  • Chakraborty R, Weiss KM (1988) Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci U S A 85:9119–9123

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53:1259–1267

    Article  Google Scholar 

  • Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983

    PubMed  CAS  Google Scholar 

  • Dahlgaard J, Hoffmann AA (2000) Stress resistance and environmental dependency of inbreeding depression in Drosophila melanogaster. Conserv Biol 14:1187–1192

    Article  Google Scholar 

  • David P (1998) Heterozygosity-fitness correlations: new perspective on old problems. Heredity 80:531–537

    Article  PubMed  Google Scholar 

  • Dawson E, Abecasis GR, Bumpstead S et al (2002) A first-generation linkage disequilibrium map of human chromosome 22. Nature 418:544–548

    Article  PubMed  CAS  Google Scholar 

  • Dermitzakis ET, Clark AG, Batargias C, Magoulas A, Zouros E (1998) Negative covariance suggests mutation bias in a two-locus microsatellite system in the fish Sparus aurata. Genetics 150:1567–1575

    PubMed  CAS  Google Scholar 

  • Dewoody YD, Dewoody JA (2005) On the estimation of genome-wide heterozygosity using molecular markers. J Hered 96:85–88

    Article  PubMed  CAS  Google Scholar 

  • Dunning AM, Durocher F, Healey CS et al (2000) The extent of linkage disequilibrium in four populations with distinct demographic histories. Am J Hum Genet 67:1544–1554

    Article  PubMed  CAS  Google Scholar 

  • Ferreira AG, Amos W (2006) Inbreeding depression and multiple regions showing heterozygote advantage in Drosophila melanogaster exposed to stress. Mol Ecol 15:3885–3893

    Article  PubMed  CAS  Google Scholar 

  • Foerster K, Delhey K, Johnsen A, Lifjeld JT, Kempenaers B (2003) Females increase offspring heterozygosity and fitness through extra-pair matings. Nature 425:714–717

    Article  PubMed  CAS  Google Scholar 

  • Ford-Lloyd BV, Newbury HJ, Jackson MT, Virk PS (2001) Genetic basis for co-adaptive gene complexes in rice (Oryza sativaL.) landraces. Heredity 87:530–536

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gage MJ, Surridge AK, Tomkins JL et al (2006) Reduced heterozygosity depresses sperm quality in wild rabbits, Oryctolagus cuniculus. Curr Biol 16:612–617

    Article  PubMed  CAS  Google Scholar 

  • Groombridge JJ, Jones CG, Bruford MW, Nichols RA (2000) ’Ghost’ alleles of the Mauritius kestrel. Nature 403:616

    Article  PubMed  CAS  Google Scholar 

  • Hanski I, Saccheri I (2006) Molecular-level variation affects population growth in a butterfly metapopulation. PLoS Biol 4:e129

    Article  PubMed  Google Scholar 

  • Hansson B (2003) Dispersal, inbreeding and fitness in natural populations. Lund University, Lund, Sweden

    Google Scholar 

  • Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474

    Article  PubMed  Google Scholar 

  • Hansson B, Bensch S, Hasselquist D, Åkesson M (2001) Microsatellite diversity predicts recruitment of sibling great reed warblers. Proc R Soc Lond B 268:1287–1291

    Article  CAS  Google Scholar 

  • Hansson B, Westerdahl H, Bensch S, Hasselquist D, Åkesson M (2004) Does linkage disequilibrium generate heterozygosity-fitness correlations in great reed warblers? Evolution 58:870–879

    PubMed  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  • Hästbacka J, de la Chapelle A, Kaitila I et al (1992) Linkage disequilibrium map** in isolated founder populations: diastrophic dysplasia in Finland. Nature Genet 2:204–211

    Article  PubMed  Google Scholar 

  • Houle D (1989) Allozyme-associated heterosis in Drosophila melanogaster. Genetics 123:789–801

    PubMed  CAS  Google Scholar 

  • Iles MM, Bishop DT (1998) The effect of population structure and mutation rate on linkage disequilibrium. Am J Hum Genet 63:A42

    Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trend Ecol Evol 11:424–429

    Article  Google Scholar 

  • Kalinowski ST, Hedrick PW (2001) Estimation of linkage disequilibrium for loci with multiple alleles: basic approach and an application using data from bighorn sheep. Heredity 87:698–708

    Article  PubMed  CAS  Google Scholar 

  • Kashi Y, Soller M (1999) Functional roles of microsatellites and minisatellites. In: Goldstein DB, (ed) Schlötterer C (eds) Microsatellites: evolution and applications. Oxford university press, Oxford, pp. 10–23

    Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trend Ecol Evol 17:230–241

    Article  Google Scholar 

  • Komdeur J (1994) Conserving the Seychelles warbler Acrocephalus sechellensis by the translocation from Cousin island to the Islands of Aride and Cousine. Biol Conserv 67:143–152

    Article  Google Scholar 

  • Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium map** of common disease genes. Nature Genet 22:139–144

    Article  PubMed  CAS  Google Scholar 

  • Leary RF, Allendorf FW, Knudsen KL (1987) Differences in inbreeding coefficients do not explain the association between heterozygosity at allozyme loci and developmental stability in rainbow trout. Evolution 41:1413–1415

    Article  Google Scholar 

  • Ledig FT (1986) Heterozygosity, heterosis and fitness in outbreeding plants. In: Soulé ME (ed) Conservation biology (The science of scarcity and diversity). Sinauer, New York, pp. 77–104

    Google Scholar 

  • Ledig FT, Conkle MT, Bermejo-Velázquez B et al (1999) Evidence for an extreme bottleneck in a rare Mexican pinyon: genetic diversity, disequilibrium, and the mating system in Pinus maximartinezii. Evolution 53:91–99

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35

    Article  CAS  Google Scholar 

  • Markert JA, Grant PR, Grant BR et al. (2004) Neutral locus heterozygosity, inbreeding, and survival in Darwin’s ground finches (Geospiza fortis and G. scandens). Heredity 92:306–315

    Article  PubMed  CAS  Google Scholar 

  • McRae AF, McEwan JC, Dodds KG et al (2002) Linkage disequilibrium in domestic sheep. Genetics 160:1113–1122

    PubMed  CAS  Google Scholar 

  • Mitton JB (1997) Selection in natural populations. Oxford university press, Oxford, United Kingdom

    Google Scholar 

  • Nordborg M, Tavaré S (2002) Linkage disequilibrium: what history has to tell us. Trend Genet 18:83–90

    Article  CAS  Google Scholar 

  • Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trend Ecol Evol 19:613–615

    Article  Google Scholar 

  • Queller DC, Strassmann JE, Hughes CR (1993) Microsatellites and kinship. Trend Ecol Evol 8:285–288

    Article  Google Scholar 

  • Reich DE, Cargill M, Bolk S et al (2001) Linkage disequilibrium in the human genome. Nature 411:199–204

    Article  PubMed  CAS  Google Scholar 

  • Reid JM, Arcese P, Keller LF (2003) Inbreeding depresses immune response in song sparrows (Melospiza melodia): direct and inter-generational effects. Proc R Soc Lond B 270:2151–2157

    Article  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M et al (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Sharbel TF, Haubold B, Mitchell-Olds T (2000) Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol 9:2109–2118

    Article  PubMed  CAS  Google Scholar 

  • Sinervo B, Clobert J (2003) Morphs, dispersal behaviour, genetic similarity, and the evolution of cooperation. Science 300:1949–1951

    Article  PubMed  CAS  Google Scholar 

  • Slate J, David P, Dodds KG et al. (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Kruuk LEB, Marshall TC, Pemberton JM, Clutton-Brock TH (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc R Soc Lond B 267:1657–1662

    Article  CAS  Google Scholar 

  • Stephens JC, Schneider JA, Tanguay DA et al. (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489–493

    Article  PubMed  CAS  Google Scholar 

  • Sutter NB, Eberle MA, Parker HG et al (2004) Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res 14:2388–2396

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger JD, Zollner S, Laan M, Paabo S (1998) Map** genes through the use of linkage disequilibrium generated by genetic drift: ’drift map**’ in small populations with no demographic expansion. Hum Hered 48:138–154

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM, Smith D, Hall SJG, Williams JA (2001) A viable herd of genetically uniform cattle. Nature 409:303

    Article  PubMed  CAS  Google Scholar 

  • Westemeier RL, Brawn JD, Simpson SA et al. (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698

    Article  PubMed  CAS  Google Scholar 

  • Wright AF, Carothers AD, Pirastu M (1999) Population choice in map** genes for complex diseases. Nat Genet 23:397–404

    Article  PubMed  CAS  Google Scholar 

  • Yan G, Romero-Severson J, Walton M, Chadee DD, Severson DV (1999) Population genetics of the yellow fever mosquito in Trinidad: comparisons of amplified fragment length polymorphism (AFLP) and restricted fragment length polymorphism (RFLP) markers. Mol Ecol 8:951–963

    Article  PubMed  CAS  Google Scholar 

  • Zouros E (1993) Associative overdominance: evaluating the effects of inbreeding and linkage disequilibrium. Genetica 89:35–46

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous referees for comments and suggestions. This work was supported by a post-doctoral grant from the Swedish Research Council and the Swedish Foundation for International Cooperation in Research and Higher Education (623-2003-191; to BH), a Marie-Curie research fellowship (EC-MEIF-CT-2003-501256; to J. M. Pemberton, University of Edinburgh, and BH) and the Swedish Foundation for Strategic Research (SSF, NGSSC; to LW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt Hansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, B., Westerberg, L. Heterozygosity-fitness correlations within inbreeding classes: local or genome-wide effects?. Conserv Genet 9, 73–83 (2008). https://doi.org/10.1007/s10592-007-9309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9309-z

Keywords

Navigation