Log in

Hydrogen peroxide production in capillary underwater discharges

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Hydrogen peroxide production by an AC driven capillary underwater discharge was investigated quantitatively. Concentration of formed hydrogen peroxide was measured by a colorimetric method using a specific reaction between H2O2 and a titanium reagent. It comes out that the amount of H2O2 increases linearly during the first hour of the discharge duration and is slightly higher at the high voltage side of the capillary. The initial rate of H2O2 formation by the capillary discharge was therefore determined for initial electrical conductivity of aqueous solution in the range of 100 ÷ 500 µS cm−1. The initial rate of H2O2 formation increases with applied power at fixed initial conductivity of aqueous solution. Experiments performed at fixed applied power indicate that the initial conductivity appears to have only negligible effect on the initial rate of H2O2 formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Clements, M. Sato and R. H. Davis: IEEE Trans. Ind. Appl. IA-23 (1987) 224.

    Google Scholar 

  2. B. Sun, M. Sato and J. S. Clements: J. Electrost. 39 (1997) 189.

    Article  Google Scholar 

  3. A. A. Joshi et al.: Journal of Hazardous Materials 41 (1995) 3.

    Article  Google Scholar 

  4. W. F. L. M. Hoeben et al.: J. Phys. D: Appl. Phys. 32 (1999) L133.

    Article  ADS  Google Scholar 

  5. P. Šunka et al.: Plasma Sources Sci. Technol. 8 (1999) 258.

    Article  ADS  Google Scholar 

  6. P. Šunka: Physics of Plasmas 8(5) (2001) 2587.

    Article  ADS  Google Scholar 

  7. B. R. Locke et al.: Ind. Eng. Chem. Res. 45 (2006) 882.

    Article  Google Scholar 

  8. F. De Baerdemaeker, M. Monte and C. Leys: Czech. J. Phys. 54 Suppl. C (2004) 1062.

    Google Scholar 

  9. F. De Baerdemaeker, C. Leys and M. Šimek: Proc. 17 th ISPC, Toronto, Canada (7–12 August 2005).

  10. E. M. Drobyshevskii, Yu. A. Dunaev and S. I. Rozov: Sov. Phys. Tech. Phys. 18(6) (1973) 772 [Zh. Tekh. Fiz. 43(6) (1973) 1217 (in Russian)].

    ADS  Google Scholar 

  11. I. P. Kuzhekin: Proc. 9 th Int. Symp. on High Voltage Engineering, Graz, Austria (28 August–1 September 1995) 8073–1.

  12. M. Sato, Y. Yamada and B. Sun: Inst. Phys. Conf. Ser. 163 (1999) 37.

    Google Scholar 

  13. M. Monte et al.: Czech. J. Phys. 52 Suppl. D (2002) 724.

    Google Scholar 

  14. G. M. Eisenberg: Ind. Eng. Chem. Anal. Ed. 15(5) (1943) 327.

    Article  Google Scholar 

  15. P. Lukeš: Water treatment by pulsed streamer corona discharge, Ph.D. Dissertation, Institute of Chemical Technology, Prague, Czech Republic, 2001.

    Google Scholar 

  16. Z. Stará and F. Krčma: Czech. J. Phys. 54 Suppl. C (2004) 1050.

    Article  Google Scholar 

  17. Z. Stará, F. Krčma and P. Slavíček: Proc. 17 th ISPC, Toronto, Canada (7–12 August 2005).

  18. P. Šunka et al.: Acta Phys. Slovaca 54(2) (2004) 135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Baerdemaeker, F., Šimek, M., Člupek, M. et al. Hydrogen peroxide production in capillary underwater discharges. Czech J Phys 56 (Suppl 2), B1132–B1139 (2006). https://doi.org/10.1007/s10582-006-0339-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-0339-4

Key words

Navigation