Log in

The effects of rapid desiccation on estimates of plant genome size

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Flow cytometry has become the dominant method for estimating nuclear DNA content in plants, either for ploidy determination or quantification of absolute genome size. Current best practices for flow cytometry involve the analysis of fresh tissue, however, this imposes significant limitations on the geographic scope and taxonomic diversity of plants that can be included in large-scale genome size studies. Dried tissue has been used increasingly in recent years, but largely in the context of ploidy analysis. Here we test rapid tissue drying with silica gel as a method for use in genome size studies, potentially enabling broader geographic sampling of plants when fresh tissue collection is not feasible. Our results indicate that rapid drying introduces comparatively minor error (<10%), which is similar to the error introduced by other common methodological variations such as instrument. Additionally, the relative effect of drying on genome size and data quality varied between species and buffers. Tissue desiccation provides a promising approach for expanding our knowledge of plant genome size diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CV:

Coefficient of variation

PI:

Propidium iodide

References

  • Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–233

    Article  CAS  Google Scholar 

  • Bainard JD, Fazekas AJF, Newmaster SG (2010) Methodology significantly affects genome size estimates: quantitative evidence using bryophytes. Cytom Part A 77A:725–732

    Article  CAS  Google Scholar 

  • Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S (2009) Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann Bot London 105:965–973

    Article  Google Scholar 

  • Baranyi M, Greilhuber J (1999) Genome size in Allium: in quest of reproducible data. Ann Bot London 83:687–695

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot London 76:113–176

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005a) Genome size evolution in plants. In: Gregory TR (ed) Evolution of the genome. Elsevier, San Diego, pp 89–162

    Chapter  Google Scholar 

  • Bennett MD, Leitch IJ (2005b) Plant genome size research: a field in focus. Ann Bot London 95:1–6

    Article  CAS  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos T R Soc B 274:227–274

    Article  CAS  Google Scholar 

  • Chase MW, Hills HH (1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40:215–220

    Article  Google Scholar 

  • Cires E, Cuesta C, Peredo EL, Revilla MA, Prieto JAF (2009) Genome size variation and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the northwest of Spain. Plant Syst Evol 281:193–208

    Article  Google Scholar 

  • Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106

    Article  PubMed  Google Scholar 

  • Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum 31:113–120

    Article  Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow-cytometric estimation of nuclear DNA content in plants. Physiol Plantarum 85:625–631

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot London 82(Suppl A):17–26

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  Google Scholar 

  • Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148

    Google Scholar 

  • Eidesen PB, Alsos IG, Popp M, Stensrud Ø, Suda J, Brochmann C (2007) Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Mol Ecol 16:3902–3925

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DW, Harkings KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Glawe GA, de Jong TJ (2009) Complex sex determination in the stinging nettle Urtica dioica. Evol Ecol 23:635–649

    Article  Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot London 82(Suppl A):27–35

    Article  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot London 95:91–98

    Article  CAS  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Weinheim, pp 67–101

    Google Scholar 

  • Harbaugh DT (2008) Polyploid and hybrid origins of Pacific island sandalwoods (Santalum, Santalaceae) inferred from low-copy nuclear and flow cytometry data. Int J Plant Sci 169:677–685

    Article  CAS  Google Scholar 

  • Hersch-Green EI, Cronn R (2009) Tangled trios?: characterizing a hybrid zone in Castilleja (Orobanchaceae). Am J Bot 96:1519–1531

    Article  PubMed  Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. AREES 38:847–876

    Google Scholar 

  • Kruskal JB (1964) Non-metric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Weinheim, pp 153–176

    Google Scholar 

  • Little DP, Moran RC, Brenner ED, Stevenson DW (2007) Nuclear genome size in Selaginella. Genome 50:351–356

    Article  PubMed  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot London 98:515–527

    Article  CAS  Google Scholar 

  • Loureiro J, Suda J, Doležel J, Santos C (2007) Flower: a plant DNA flow cytometry database. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag, Weinheim, pp 423–438

    Chapter  Google Scholar 

  • McCune B, Mefford MJ (1997) PC-ORD. Multivariate analysis of ecological data (version 3.20). MjM Software Design, Gleneden Beach, OR, USA

    Google Scholar 

  • Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107

    Article  Google Scholar 

  • Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C (2008) Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). J Biogeogr 35:1016–1029

    Article  Google Scholar 

  • Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot London 86:929–934

    Article  CAS  Google Scholar 

  • Richards AJ (1985) Sectional nomenclature in Taraxacum (Asteraceae). Taxon 34:633–644

    Article  Google Scholar 

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phyl Evol 42:92–103

    Article  Google Scholar 

  • Šmarda P (2006) DNA ploidy levels and intraspecific DNA content variability in Romanian fescues (Festuca, Poaceae) measured in fresh and herbarium material. Folia Geobot 41:417–432

    Article  Google Scholar 

  • Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61

    Google Scholar 

  • Šmarda P, Stančík D (2006) Ploidy level variability in South American fescues (Festuca L., Poaceae): use of flow cytometry in up to 5½-year-old caryopses and herbarium specimens. Plant Biol 8:73–80

    Article  PubMed  Google Scholar 

  • Šmarda P, Müller J, Vrána J, Kočí K (2005) Ploidy level variability of some central European fescues (Festuca subg. Festuca, Poaceae). Biologia Bratislava 60:25–36

    Google Scholar 

  • Sonnleitner M, Flatscher R, García PE, Rauchová J, Suda J, Schneeweiss GM, Hülber K, Schönswetter P (2010) Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann Bot London 106:967–977

    Article  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Suda J (2004) An employment of flow cytometry into plant biosystematics. Ph.D. thesis, Department of Botany, Faculty of Science, Charles University, Prague

  • Suda J, Trávníček P (2006a) Estimation of relative nuclear DNA content in dehydrated plant tissues by flow cytometry. Curr Protocol Cytom 38:7.30.1–7.30.14

    Google Scholar 

  • Suda J, Trávníček P (2006b) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. Cytom Part A 69A:273–280

    Article  Google Scholar 

  • Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P (2007) Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Am J Bot 94:1391–1401

    Article  PubMed  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s Guide: software for Canonical Community Ordination (version 4.5). Section on Permutation Methods. Microcomputer Power, Ithaca, New York

    Google Scholar 

  • Voglmayr H (2000) Nuclear DNA amounts in mosses (Musci). Ann Bot London 85:531–546

    Article  CAS  Google Scholar 

  • Whittemore AT, Olsen RT (2011) Ulmus americana (Ulmaceae) is a polyploidy complex. Am J Bot 98:754–760

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study represented a collaborative project involving three research groups and was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) grants to BCH, TRG, and SGN and used equipment provided through the Canada Foundation for Innovation (CFI) and the Ontario Research Fund (ORF). Additional support was provided to BCH through a Canada Research Chair and to JDB by an NSERC postgraduate scholarship. We sincerely thank P. Šmarda and J. Suda for providing constructive feedback on the manuscript. We wish to thank several other lab members for assisting with flow cytometric analysis, including Anastasia Richardson, Kelly Hadfield, Nicholas Jeffery, João Lima, Paula Nathwani, and Paola Pierossi. We also thank Hana Serajaddini, Lindsay Wilson, Benjamin Yim, and Thomas Henry for lab and field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kron.

Additional information

Responsible Editors: T. Ryan Gregory and Jillian D. Bainard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 21.8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bainard, J.D., Husband, B.C., Baldwin, S.J. et al. The effects of rapid desiccation on estimates of plant genome size. Chromosome Res 19, 825–842 (2011). https://doi.org/10.1007/s10577-011-9232-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9232-5

Keywords

Navigation