Log in

Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The centromere is a region utilized for spindle attachment on a eukaryotic chromosome and essential for accurate chromatid segregation. In most eukaryotes, centromeres have specific DNA sequences and are capable of assembling specific proteins to form a complex called the kinetochore. Among these proteins, centromeric histone H3 (CENH3) is one of the most fundamental, since CENH3s have been found in all investigated functional centromeres and recruits other centromeric proteins. In this study, the localization of alien CENH3s were analyzed in Arabidopsis and tobacco-cultured cells to determine the interaction between species-specific centromeric DNA and CENH3. Results showed that CENH3 of Arabidopsis and tobacco were localized on centromeres in the tobacco-cultured cells, unlike the case with CENH3 of rice and Luzula. In addition to these CENH3s, CENH3 of Luzula was partially localized in the Arabidopsis cultured cells. These data suggest that only evolutionally close CENH3s are able to target centromeres in alien species. Furthermore, the ability to target alien centromeres of histone fold domains was investigated using amino-terminal deleted CENH3s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2, 4-D:

2, 4-dichlorophenoxyacetic acid

Cen:

centromeric

CENH3:

centromeric histone H3

Disp:

dispersed

GFP:

green fluorescent protein

HFD:

histone fold domains

HTR12:

centromeric histone H3 of Arabidopsis thaliana

LnCENH3:

centromeric histone H3 of Luzula nivea

LS medium:

Linsmaier and Skoog’s medium

MS medium:

Murashige and Skoog’s medium

NtCENH3:

centromeric histone H3 of Nicotiana tabaccum

OsCENH3:

centromeric histone H3 of Oryza sativa

T-DNA:

transfer DNA

References

  • Amor DJ, Kalitsis P, Sumer H, Choo KH (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14:359–368

    Article  CAS  PubMed  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A 95:13073–13078

    Article  CAS  PubMed  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL Jr, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  CAS  PubMed  Google Scholar 

  • Cooper JL, Henikoff S (2004) Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21:1717–1718

    Article  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A 95:8135–8140

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315

    Article  CAS  PubMed  Google Scholar 

  • ** W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Matsumoto T, Koiwai A, Mizusaki S, Nishida K, Noguchi M, Tamaki E (1972) Liquid suspension culture of tobacco cells. Proc IV IFS: Ferment Technol 680–695

  • Kawabe A, Nasuda S (2005) Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol Gen Genomics 272:593–602

    Article  CAS  Google Scholar 

  • Kondo K, Lavarack PS (1984) A cytotaxonomic study of some Australian species of Drosera L. (Droseraceae). Botanical J Linnean Soc 88:317–333

    Article  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321

    Article  CAS  PubMed  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res 8:285–290

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Zhang W, Langdon T, ** W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci U S A 102:11793–11798

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2442–2451

    Article  Google Scholar 

  • Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298

    CAS  PubMed  Google Scholar 

  • Mathur J, Szabados L, Schaefer S, Grunenberg B, Lossow A, Jonas-Straube E, Schell J, Konez C, Konez-Kalman Z (1998) Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension. Plant J 13:707–716

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Tsujimoto H, Sasakuma T (1998) A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions. Chromosome Res 6:295–302

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2009a) A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma 118:249–257

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2009b) Characterization of the two centromeric proteins CENP-C and MIS12 in Nicotiana species. Chromosome Res 17:719–726

    Article  CAS  PubMed  Google Scholar 

  • Pimpinelli S, Goday C (1989) Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet 5:310–315

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sato H, Shibata F, Murata M (2005) Characterization of a Mis 12 homologue in Arabidopsis thaliana. Chromosome Res 13:827–834

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22:7553–7561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Wesco Scientific Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Nagaki.

Additional information

Responsible Editor: Hans de Jong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaki, K., Terada, K., Wakimoto, M. et al. Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells. Chromosome Res 18, 203–211 (2010). https://doi.org/10.1007/s10577-009-9108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9108-0

Keywords

Navigation