Log in

On the Hydrodynamic Thickness of Cellular Detonations

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The characterization of the detonation dynamic parameters (detonability limits, direct initiation energy, critical tube diameter, etc.) requires a characteristic length scale for the detonation wave in the direction of propagation. However, most detonations are unstable, their reaction zones are turbulent, and their structure departs significantly from the idealized one-dimensional Zel'dovich-Von Neumann-Doring model. It is argued that the most suitable length scale to characterize a turbulent detonation wave is the location of the sonic surface, which separates the statistically stationary flow of the reaction zone structure from the unsteady expansions behind the wave. Previous real and numerical experiments are reviewed in order to determine the relation between the global location of the mean sonic surface and the chemical, mechanical, and thermodynamic relaxation processes occurring in the detonation wave structure. Based on the experimental evidence, we postulate that the structure of turbulent detonations can be modeled in the one-dimensional Zel'dovich-Neumann-Doring framework, with the turbulence effects as source terms in the momentum and energy equations. These source terms involve the relaxation rates for the mechanical fluctuations, thermal fluctuations and the chemical exothermicity towards equilibrium. In the framework of the idealized one-dimensional structure with source terms, the sonic surface location is governed by the balance between the competing source terms satisfying the generalized Chapman-Jouguet criterion. We recommend that future work in detonation research should be focused at: 1) acquiring a large experimental database for the mean detonation properties (detonation velocity, location of sonic surface and mean reaction zone profiles); 2) the development of the appropriate source terms involving the turbulent fluctuations in the averaged equations of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. I. Schelkin and Ya. K. Troshin, Gas-dynamics of Combustion, Mono Book, Baltimore (1965).

    Google Scholar 

  2. J. H. S. Lee, “Dynamic parameters of gaseous detonations,” Ann. Rev. Fluid Mech., 16, 311–336 (1984).

    Article  ADS  Google Scholar 

  3. M. I. Radulescu and J. H. S. Lee, “The failure mechanism of gaseous detonations: experiments in porous wall tubes,” Combust. Flame, 131, 29–46 (2002).

    Article  Google Scholar 

  4. I. O. Moen, A. Sulmistras, G. O. Thomas, et al., “Influence of cellular regularity on the behavior of gaseous detonations,” in: J. R. Bowen, J.-C. Leyer, and R. I. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 106: Dynamics of Explosions (1986), pp. 220–243.

  5. J. H. S. Lee, “The propagation mechanism of cellular detonation,” in: Proc. of the 24th Int. Symp. on Shock Waves, China (2004).

  6. R. I. Soloukhin, “Nonstationary phenomena in gaseous detonation,” Proc. Combust. Inst., 12, 799–807 (1969).

    Google Scholar 

  7. J. H. Lee, R. I. Soloukhin, and A. K. Oppenheim, “Current views on gaseous detonation,” Astronaut. Acta, 14, 565–584 (1969).

    Google Scholar 

  8. R. I. Soloukhin, “Multiheaded structure of gaseous detonation,” Combust. Flame, 10, 51–58 (1966).

    Article  Google Scholar 

  9. E. A. Lundstrom and A. K. Oppenheim, “On the influence of non-steadiness on the thickness of the detonation wave,” Proc. Roy. Soc. A., 310, 463–478 (1969).

    ADS  MATH  Google Scholar 

  10. R. A. Strehlow, “Detonation structure and gross properties,” Combust. Sci. Technol., 4, 65–71 (1971).

    Google Scholar 

  11. D. H. Edwards, A. J. Jones, D. E. Phillips, “Location of Chapman-Jouguet surface in a multiheaded detonation-wave,” J. Phys., D: Appl. Phys., 9, 1331–1342 (1976).

    ADS  Google Scholar 

  12. J. M. Austin, F. Pintgen, and J. E. Shepherd, “Reaction zones in highly unstable detonations,” Proc. Comb. Inst., 30, 1849–1857 (2005).

    Article  Google Scholar 

  13. M. I. Radulescu, G. J. Sharpe, J. H. S. Lee, et al., “The ignition mechanism in irregular structure gaseous detonations,” Proc. Comb. Inst. 30, 1859–1867 (2005).

    Google Scholar 

  14. W. Jost, Explosion and Combustion Processes in Gases, McGraw-Hill, New York-London (1946).

    Google Scholar 

  15. G. Taylor, “The dynamics of the combustion products behind plane and spherical detonation fronts in explosives,” Proc. Roy. Soc. A, 200, No.1061, 235–247 (1950).

    ADS  MATH  Google Scholar 

  16. A. R. Kasimov and D. S. Stewart, “On the dynamics of self-sustained one-dimensional detonations: A numerical study in the shock-attached frame,” Phys. Fluids, 16, No.10, 3566–3578 (2004).

    Article  ADS  Google Scholar 

  17. A. A. Vasil'ev, T. P. Gavrilenko, and M. E. Topchian, “On the Chapman-Jouguet surface in multi-headed gaseous detonations,” Astronaut. Acta, 17, 499–502 (1972).

    Google Scholar 

  18. M. Weber and H. Olivier, “The thickness of detonation waves visualized by slight obstacles,” Shock Waves, 13, No.5, 351–365 (2004).

    ADS  Google Scholar 

  19. A. I. Gavrikov, A. A. Efimenko, and S. B. Dorofeev, “A model for detonation cell size prediction from chemical kinetics,” Combust. Flame, 120, Nos. 1–2, 19–33 (2000).

    Google Scholar 

  20. G. J. Sharpe, “The structure of planar and curved detonation waves with reversible reactions,” Phys. Fluids, 12, No.11, 3007–3020 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Fickett and W. C. Davis, Detonation, University of California Press, Berkley (1979).

    Google Scholar 

  22. D. S. Stewart and J. Yao, “The normal detonation shock velocity-curvature relationship for materials with non-ideal equation of state and multiple turning points,” Combust. Flame, 113, 224–235 (1998).

    Article  Google Scholar 

  23. Ya. B. Zel'dovich, “On the theory of the propagation of detonation in gaseous system,” Zh. Eksp. Teor. Fiz., 10, 542–568 (1940); also in NACA TM 1261 (1960).

    Google Scholar 

  24. A. A. Vasil'ev, V. V. Mitrofanov, M. E. Topchyan, “Detonation waves in gases,” Combust., Expl., Shock Waves, 23, No.5, 109–131 (1987).

    Google Scholar 

  25. Yu. N. Denisov and Ya. K. Troshin, “Pulsating and spinning detonation of gaseous mixtures in tubes,” Dokl. Akad. Nauk. SSSR, 125, 110–113 (1959).

    Google Scholar 

  26. F. Pintgen, C. A. Eckett, J. M. Austin, and J. E. Shepherd, “Direct observations of reaction zone structure in propagating detonations,” Combust. Flame, 133, No.3, 211–229 (2003).

    Article  Google Scholar 

  27. A. A. Vasil'ev and Y. Nikolaev, “Closed theoretical model of a detonation cell,” Acta Astronaut., 5, 983–996 (1978).

    ADS  Google Scholar 

  28. V. Subbotin, “Two kinds of transverse wave structures in multi-front detonation,” Combust., Expl., Shock Waves, 11, No.1, 96–102 (1975).

    Google Scholar 

  29. M. I. Radulescu, G. J. Sharpe, and C. K. Law, “The Favre-averaged structure of turbulent cellular detonations,” in: Proc. of the 20th ICDERS, Montreal, Canada, July (2005).

  30. G. J. Sharpe, “Transverse waves in numerical simulations of cellular detonations,” J. Fluid Mech., 447, 31–51 (2001).

    ADS  MATH  MathSciNet  Google Scholar 

  31. A. Favre, “Equations des gas turbulents compressibles,” J. Mecanique, 4, 361–421 (1965).

    Google Scholar 

  32. B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchian, Structure of a Detonation Front in Gases [in Russian], Izd. Akad. Nauk SSSR, Novosibirsk (1963).

    Google Scholar 

  33. D. R. White, “Turbulent structure of gaseous detonation,” Phys. Fluids, 4, 465–480 (1961).

    MATH  ADS  Google Scholar 

  34. R. Panton, “Effects of structure on average properties of two-dimensional detonations,” Combust. Flame, 16, 75–82 (1971).

    Google Scholar 

  35. S. S. Rybanin, “Turbulence in detonations,” Combust., Expl., Shock Waves, 2, No.1, 29–35 (1966).

    Google Scholar 

  36. Yu. A. Nikolaev and D. V. Zak, “Quasi-one-dimensional model of self-sustaining multifront gas detonation with losses and turbulence taken into account,” Combust., Expl., Shock Waves, 25, No.2, 103–112 (1989).

    Article  Google Scholar 

  37. J. B. Bdzil, “Steady state two dimensional detonation,” J. Fluid Mech., 108, 195–226 (1981).

    ADS  MATH  Google Scholar 

  38. N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK (2000).

    MATH  Google Scholar 

  39. G. B. Kistiakowsky and P. H. Kydd, “Gaseous detonations. IX. A study of the reaction zone by gas density measurements,” J. Chem. Phys., 25, No.5, 824–835 (1956).

    Article  ADS  Google Scholar 

  40. H. D. Ng, N. Nikiforakis, and J. H. S. Lee, “Head-on collision of a detonation with a planar shock wave,” in: Proc. of the 24th Int. Symp. on Shock Waves, China (2004); also H. D. Ng, B. B. Botros, J. Chao, et al., “Head-on collision of a detonation with a planar shock wave,” Submitted to Shock Waves, October (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 6, pp. 157–180, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H.S., Radulescu, M.I. On the Hydrodynamic Thickness of Cellular Detonations. Combust Explos Shock Waves 41, 745–765 (2005). https://doi.org/10.1007/s10573-005-0084-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0084-1

Key words

Navigation