Log in

Inhibition of Ferroptosis Alleviates Early Brain Injury After Subarachnoid Hemorrhage In Vitro and In Vivo via Reduction of Lipid Peroxidation

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is a serious cerebrovascular disease with high mortality, and the mean age at morbidity is younger than in other types of stroke. Early brain injury (EBI) plays a key role in the poor prognoses of SAH. In EBI, multiple forms of cell death have been identified and well studied; however, the role of ferroptosis has not been elucidated. Hence, in this study, we developed an in vivo (SAH rat model) and in vitro model (SH-SY5Y oxyhemoglobin injury model) to understand the role of ferroptosis in EBI, then explored the protective mechanism of ferrostatin-1 (Fer-1). Firstly, we found that neurological scores, blood–brain barrier permeability, brain edema deteriorated after SAH in the in vivo model, cell viability was decreased after SAH in both cortex and SH-SY5Y cells. Further, iron content in cortex was increased after SAH, while transferrin receptor 1 and ferroportin (Fpn) were increased in oxyhemoglobin-treated in vitro model. Additionally, glutathione content and glutathione peroxidase 4 activity were reduced in SAH rats, and lipid peroxides were increased in the oxyhemoglobin-treated cells. Finally, administration of Fer-1 upregulated Fpn and decreased the iron content, then improved the lipid peroxidation and EBI. However, Fer-1 had no effect on the apoptosis. Our study indicated that the ferroptosis was involved in EBI of SAH, and the inhibitor Fer-1 provided neuroprotection against EBI by alleviating ferroptosis, the potential protective mechanism might be via suppressing lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

CCA:

Common carotid artery

DMT1:

Divalent metal transporter 1

DW:

Dry weight

EBI:

Early brain injury

ECA:

External carotid artery

Fer-1:

Ferrostatin-1

FJC:

Fluoro-Jade C

Fpn:

Ferroportin

GPx4:

Glutathione peroxidase 4

GSH:

Glutathione

Hb:

Oxyhemoglobin

ICH:

Intracranial hematoma

ICA:

Internal carotid artery

IRP1/2:

Iron regulatory proteins 1/2

OD:

Optical density

PBS:

Phosphate buffer solution

ROS:

Reactive oxygen species

SAH:

Subarachnoid hemorrhage

TEM:

Transmission electron microscope

TfR1:

Transferrin receptor 1

WW:

Wet weight

References

  • Bayeva M, Khechaduri A, Puig S, Chang HC, Patial S, Blackshear PJ, Ardehali H (2012) mTOR regulates cellular iron homeostasis through tristetraprolin. Cell Metab 16(5):645–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73(11–12):2195–2209

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Arcy M (2019) Cell death. A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592

    PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drakesmith H, Nemeth E, Ganz T (2015) Ironing out ferroportin. Cell Metab 22(5):777–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edebali NTI, Açıkgöz B, Açıkgöz S, Barut F, Sevinç N, Sümbüloğlu V (2014) Apoptosis and necrosis in the circumventricular organs after experimental subarachnoid hemorrhage as detected with annexin V and caspase 3 immunostaining. Neurol Res 36(12):1114–1120

    CAS  PubMed  Google Scholar 

  • Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634

    CAS  PubMed  Google Scholar 

  • Geng N, Shi BJ, Li SL, Zhong ZY, Li YC, Xua WL, Zhou H, Cai JH (2018) Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharm Sci 22(12):3826–3836

    CAS  Google Scholar 

  • Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S (2017) Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochem Int 104:34–48

    CAS  PubMed  Google Scholar 

  • Hansen-Schwartz J, Vajkoczy P, Macdonald RL, Pluta RM, Zhang JH (2007) Cerebral vasospasm: looking beyond vasoconstriction. Trends Pharmacol Sci 28(6):252–256

    CAS  PubMed  Google Scholar 

  • Hong SH, Lee DH, Lee YS, Jo MJ, Jeong YA, Kwon WT, Choudry HA, Bartlett DL, Lee YJ (2017) Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget 8(70):115164–115178

    PubMed  PubMed Central  Google Scholar 

  • Hou W, **e Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, Kang R, Tang D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T (2017) Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol 403:143–170

    CAS  PubMed  Google Scholar 

  • Li XHQ, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, Ying M, Koehler RC, Stockwell BR, Wang J (2017) Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2(7):1–19

    Google Scholar 

  • Li Y, Wu P, Dai J, Zhang T, Bihl J, Wang C, Liu Y, Shi H (2019) Inhibition of mTOR alleviates early brain injury after subarachnoid hemorrhage via relieving excessive mitochondrial fission. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-019-00760

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Kawakita F, Fujimoto M, Nakano F, Imanaka-Yoshida K, Yoshida T, Suzuki H (2017) Role of periostin in early brain injury after subarachnoid hemorrhage in mice. Stroke 48(4):1108–1111

    PubMed  Google Scholar 

  • Liu W, Li R, Yin J, Guo S, Chen Y, Fan H, Li G, Li Z, Li X, Zhang X, He X, Duan C (2019) Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch. J Neuroinflammation 16(1):8

    PubMed  PubMed Central  Google Scholar 

  • Ma S, Henson ES, Chen Y, Gibson SB (2016) Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 7:e2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Wang J, Li J, Ma C, Chen S, Lei W, Yang Y, Liu S, Bihl J, Chen C (2018) Loading MiR-210 in endothelial progenitor cells derived exosomes boosts their beneficial effects on hypoxia/reoxygeneation-injured human endothelial cells via protecting mitochondrial function. Cell Physiol Biochem 46(2):664–675

    CAS  PubMed  Google Scholar 

  • MacKenzie EL, Iwasaki K, Tsuji Y (2008) Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal 10(6):997–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos A-T, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI, Cater MA (2018) Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol 14:100–115

    CAS  PubMed  Google Scholar 

  • Morris G, Berk M, Carvalho AF, Maes M, Walker AJ, Puri BK (2018) Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 341:154–175

    CAS  PubMed  Google Scholar 

  • Musci G, Polticelli F, Bonaccorsi di Patti MC (2014) Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J Biol Chem 5(2):204–215

    PubMed  PubMed Central  Google Scholar 

  • Neitemeier S, Jelinek A, Laino V, Hoffmann L, Eisenbach I, Eying R, Ganjam GK, Dolga AM, Oppermann S, Culmsee C (2017) BID links ferroptosis to mitochondrial cell death pathways. Redox Biol 12:558–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, Janah R, Greten HJ, Efferth T (2015) Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine 22(11):1045–1054

    CAS  PubMed  Google Scholar 

  • Peng Y, ** J, Fan L, Xu H, He P, Li J, Chen T, Ruan W, Chen G (2018) Rolipram attenuates early brain injury following experimental subarachnoid hemorrhage in rats: possibly via regulating the SIRT1/NF-kappaB pathway. Neurochem Res 43(4):785–795

    CAS  PubMed  Google Scholar 

  • Sakai O, Uchida T, Imai H, Ueta T (2016) Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells. FEBS Open Biol 6(12):1238–1247

    CAS  Google Scholar 

  • Savarraj J, Parsha K, Hergenroeder G, Ahn S, Chang TR, Kim DH, Choi HA (2018) Early brain injury associated with systemic inflammation after subarachnoid hemorrhage. Neurocrit Care 28(2):203–211

    PubMed  Google Scholar 

  • Shao J, Wu Q, Lv SY, Zhou XM, Zhang XS, Wen LL, Xue J, Zhang X (2019) Allicin attenuates early brain injury after experimental subarachnoid hemorrhage in rats. J Clin Neurosci 63:202–208

    CAS  PubMed  Google Scholar 

  • Shaw AT, Winslow MM, Magendantz M, Ouyang C, Dowdle J, Subramanian A, Lewis TA, Maglathin RL, Tolliday N, Jacks T (2011) Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci USA 108(21):8773–8778

    CAS  PubMed  Google Scholar 

  • Shi L, Liang F, Zheng J, Zhou K, Chen S, Yu J, Zhang J (2018) Melatonin regulates apoptosis and autophagy via ROS-MST1 pathway in subarachnoid hemorrhage. Front Mol Neurosci 11:93

    PubMed  PubMed Central  Google Scholar 

  • Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A, Stockwell BR (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136(12):4551–4556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167(2):327–334

    PubMed  Google Scholar 

  • Sun Q, Wu W, Hu YC, Li H, Zhang D, Li S, Li W, Li WD, Ma B, Zhu JH, Zhou ML, Hang CH (2014) Early release of high-mobility group box 1 (HMGB1) from neurons in experimental subarachnoid hemorrhage in vivo and in vitro. J Neuroinflammation 11:106

    PubMed  PubMed Central  Google Scholar 

  • Suzuki H (2015) What is early brain injury? Transl Stroke Res 6(1):1–3

    PubMed  Google Scholar 

  • Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, Wang L, Piao M, Chi G, Luo Y, Ge P (2018) Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett 428:21–33

    CAS  PubMed  Google Scholar 

  • Wenz C, Faust D, Linz B, Turmann C, Nikolova T, Bertin J, Gough P, Wipf P, Schroder AS, Krautwald S, Dietrich C (2018) t-BuOOH induces ferroptosis in human and murine cell lines. Arch Toxicol 92(2):759–775

    CAS  PubMed  Google Scholar 

  • Wenzel SE, Tyurina YY, Zhao J, St. Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA, Amoscato AA, Mikulska-Ruminska K, Shrivastava IH, Kenny EM, Yang Q, Rosenbaum JC, Sparvero LJ, Emlet DR, Wen X, Minami Y, Qu F, Watkins SC, Holman TR, VanDemark AP, Kellum JA, Bahar I, Bayır H, Kagan VE (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(3):628.e626–641.e626

    Google Scholar 

  • Wu P, Li Y, Zhu S, Wang C, Dai J, Zhang G, Zheng B, Xu S, Wang L, Zhang T, Zhou P, Zhang JH, Shi H (2017) Mdivi-1 alleviates early brain injury after experimental subarachnoid hemorrhage in rats, possibly via inhibition of Drp1-activated mitochondrial fission and oxidative stress. Neurochem Res 42(5):1449–1458

    CAS  PubMed  Google Scholar 

  • Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176

    CAS  PubMed  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Chen X, Li S, Sun B, Hang C (2018) Melatonin treatment regulates SIRT3 expression in early brain injury (EBI) due to reactive oxygen species (ROS) in a mouse model of subarachnoid hemorrhage (SAH). Med Sci Monit 24:3804–3814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Wu P, Zhang JH, Li Y, Xu S, Wang C, Wang L, Zhang G, Dai J, Zhu S, Liu Y, Liu B, Reis C, Shi H (2018) Docosahexaenoic acid alleviates oxidative stress-based apoptosis via improving mitochondrial dynamics in early brain injury after subarachnoid hemorrhage. Cell Mol Neurobiol 38(7):1413–1423

    CAS  PubMed  Google Scholar 

  • Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA, Ratan RR (2017) Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke 48(4):1033–1043

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the American Heart Association, USA (16SDG26420078), Natural Science Foundation of Heilongjiang Province, China (ZD2018018) and Innovation Fund of Harbin Medical University, China (YTSKYCX2018-38HYD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Bihl or Huaizhang Shi.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Y., Wu, P. et al. Inhibition of Ferroptosis Alleviates Early Brain Injury After Subarachnoid Hemorrhage In Vitro and In Vivo via Reduction of Lipid Peroxidation. Cell Mol Neurobiol 41, 263–278 (2021). https://doi.org/10.1007/s10571-020-00850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00850-1

Keywords

Navigation