Log in

Ameliorating the Effect of Pioglitazone on LPS-Induced Inflammation of Human Oligodendrocyte Progenitor Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oligodendrocyte progenitor cells (OPCs) are appropriate model cells for studying the progress of neurodegenerative disorders and evaluation of pharmacological efficacies of small molecules for treatment of these disorders. Here, we focused on the therapeutic role of Pioglitazone, which is a selective agonist of peroxisome proliferator-activated receptor gamma (PPARγ), a respective nuclear receptor in inflammatory responses. Human embryonic stem cell-derived OPCs were pretreated by Pioglitazone at differing concentrations. Pretreated OPCs were further examined after induction of inflammation by LPS. Interestingly, Pioglitazone reversed the inflammatory conditions and enhanced OPC viability. Data showed that Pioglitazone reduced Nitric Oxide (NO) production. Moreover, Pioglitazone enhanced cell viability through distinct mechanisms including reduction of apoptosis and regulation of cell cycle markers. This study demonstrated that NO induces apoptosis through FOXO1 and degradation of β-catenin, while the presence of Pioglitazone inhibited these effects in rescuing human OPCs from apoptosis. Also, Pioglitazone did not show a significant influence on mRNA levels of TLR2, TRL4, and TNFα. Furthermore, simultaneous treatment of Pioglitazone with CHIR, a GSKβ inhibitor, facilitated anti-apoptotic responses of OPCs. Taken together, therapy with Pioglitazone represents a novel potential drug in alleviating the loss of OPCs in neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

15d-PGJ2:

Cyclopentenone prostaglandin 15-deoxy 12,14 prostaglandin J2

bFGF:

Basic fibroblast growth factor

EGF:

Epidermal growth factor

FITC:

Fluorescein isothiocyanate

GRM:

Glial restriction medium

GSK-3:

Glycogen synthase kinase-3

hESCs:

Human embryonic stem cells

HRP:

Horseradish peroxidase

IRF1:

Interferon regulatory factor-1

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinases

MS:

Multiple sclerosis

MTS/PMS:

[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)-2H-tetrazolium)/phenazine methosulfate]

NOS:

NO synthase

NSCs:

Neural stem cells

OPCs:

Oligodendrocyte progenitor cells

PBMCs:

Peripheral blood mononuclear cells

PDGF:

Platelet-derived growth factor

PHA:

Phyto-hemagglutinin

PI:

Propidium iodide

PPARγ:

Peroxisome proliferator-activated receptor γ

PVDF:

Polyvinylidene difluoride

qPCR:

Quantitative real-time PCR

RA:

Retinoic acid

STAT1:

Signal transducer and activator of transcription 1

TLR:

Toll-like receptor

References

  • Almeida M (2011) Unraveling the role of FoxOs in bone–insights from mouse models. Bone 49(3):319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armoni M, Harel C, Karni S, Chen H, Bar-Yoseph F, Ver MR, Quon MJ, Karnieli E (2006) FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem 281(29):19881–19891

    Article  CAS  PubMed  Google Scholar 

  • Baharvand H, Ashtiani SK, Taee A, Massumi M, Valojerdi MR, Yazdi PE, Moradi SZ, Farrokhi A (2006) Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev Growth Differ 48(2):117–128

    Article  PubMed  Google Scholar 

  • Bernardo A, Bianchi D, Magnaghi V, Minghetti L (2009) Peroxisome proliferator-activated receptor-gamma agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol 68(7):797–808

    Article  CAS  PubMed  Google Scholar 

  • Chew LJ, King WC, Kennedy A, Gallo V (2005) Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia 52(2):127–143

    Article  PubMed  Google Scholar 

  • Dasu MR, Park S, Devaraj S, Jialal I (2009) Pioglitazone inhibits Toll-like receptor expression and activity in human monocytes and db/db mice. Endocrinology 150(8):3457–3464

    Article  CAS  PubMed  Google Scholar 

  • Drew PD, Xu J, Racke MK (2008) PPAR-gamma: therapeutic potential for multiple sclerosis. PPAR Res 2008:627463

    Article  PubMed  PubMed Central  Google Scholar 

  • Esfandiari F, Fathi A, Gourabi H, Kiani S, Nemati S, Baharvand H (2012) Glycogen synthase kinase-3 inhibition promotes proliferation and neuronal differentiation of human-induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev 21(17):3233–3243

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3(9):705–714

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Huang JK, Jarjour AA, Nait Oumesmar B, Kerninon C, Williams A, Krezel W, Kagechika H, Bauer J, Zhao C, Baron-Van Evercooren A, Chambon P, Ffrench-Constant C, Franklin RJ (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Kanakasabai S, Pestereva E, Chearwae W, Gupta SK, Ansari S, Bright JJ (2012) PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS ONE 7(11):e50500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22(7):2478–2486

    CAS  PubMed  Google Scholar 

  • Lin CF, Tsai CC, Huang WC, Wang CY, Tseng HC, Wang Y, Kai JI, Wang SW, Cheng YL (2008) IFN-gamma synergizes with LPS to induce nitric oxide biosynthesis through glycogen synthase kinase-3-inhibited IL-10. J Cell Biochem 105(3):746–755

    Article  CAS  PubMed  Google Scholar 

  • Miglio G, Rosa AC, Rattazzi L, Grange C, Collino M, Camussi G, Fantozzi R (2011) The subtypes of peroxisome proliferator-activated receptors expressed by human podocytes and their role in decreasing podocyte injury. Br J Pharmacol 162(1):111–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina-Holgado E, Vela JM, Arévalo-Martín A, Guaza C (2001) LPS/IFN-gamma cytotoxicity in oligodendroglial cells: role of nitric oxide and protection by the anti-inflammatory cytokine IL-10. Eur J Neurosci 13(3):493–502

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S, Kasper DL, Kasper LH (2010) Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide a expression. J Immunol 185(7):4101–4108

    Article  PubMed  Google Scholar 

  • Pakzad M, Totonchi M, Taei A, Seifinejad A, Hassani SN, Baharvand H (2010) Presence of a ROCK inhibitor in extracellular matrix supports more undifferentiated growth of feeder-free human embryonic and induced pluripotent stem cells upon passaging. Stem Cell Rev 6(1):96–107

    Article  CAS  PubMed  Google Scholar 

  • Pershadsingh HA, Heneka MT, Saini R, Amin NM, Broeske DJ, Feinstein DL (2004) Effect of pioglitazone treatment in a patient with secondary multiple sclerosis. J Neuroinflammation 1(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrova TV, Akama KT, Van Eldik LJ (1999) Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric-oxide synthase by 15-deoxy-Delta 12,14-prostaglandin J2. Proc Natl Acad Sci USA 96(8):4668–4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polvani S, Tarocchi M, Galli A (2012) PPARγ and oxidative stress: Con(β) catenating NRF2 and FOXO. PPAR Res 2012:641087

    Article  PubMed  PubMed Central  Google Scholar 

  • Pouya A, Satarian L, Kiani S, Javan M, Baharvand H (2011) Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination. PLoS ONE 6(11):e27925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabo JK, Cate HS (2013) Signalling pathways that inhibit the capacity of precursor cells for myelin repair. Int J Mol Sci 14(1):1031–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt S, Moric E, Schmidt M, Sastre M, Feinstein DL, Heneka MT (2004) Anti-inflammatory and antiproliferative actions of PPAR-gamma agonists on T lymphocytes derived from MS patients. J Leukoc Biol 75(3):478–485

    Article  CAS  PubMed  Google Scholar 

  • Tahamtani Y, Azarnia M, Farrokhi A, Sharifi-Zarchi A, Aghdami N, Baharvand H (2013) Treatment of human embryonic stem cells with different combinations of priming and inducing factors toward definitive endoderm. Stem Cells Dev 22(9):1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Vartanian T, Li Y, Zhao M, Stefansson K (1995) Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med 1(7):732–743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ren Z, Tao D, Tilwalli S, Goswami R, Balabanov R (2010) STAT1/IRF-1 signaling pathway mediates the injurious effect of interferon-gamma on oligodendrocyte progenitor cells. Glia 58(2):195–208

    Article  PubMed  Google Scholar 

  • Yki-Järvinen H (2004) Thiazolidinediones. N Engl J Med 351(11):1106–1118

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues and Royan staff members for their association and helpful discussion in this project. This study was supported Royan Institute. None of the authors have any conflicts of interest to disclose and all authors support submission to this journal.

Author information

Authors and Affiliations

Authors

Contributions

MP contributed to the conception and design of the work, acquisition of data, analysis and interpretation of data, and drafted sections of the manuscript. M-SH contributed to the acquisition and analysis of data. AG contributed to the acquisition of data and drafted sections of the manuscript. AK-E contributed to the acquisition of data and drafted sections of the manuscript. KG contributed to the design of work, analysis and interpretation of data, and finalized the manuscript. MHN-E contributed to the design of work, analysis and interpretation of data, and finalized the manuscript. HB contributed to the design of work, analysis and interpretation of data, and finalized the manuscript.

Corresponding authors

Correspondence to Kamran Ghaedi, Mohammad Hossein Nasr-Esfahani or Hossein Baharvand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peymani, M., Ghaedi, K., Hashemi, MS. et al. Ameliorating the Effect of Pioglitazone on LPS-Induced Inflammation of Human Oligodendrocyte Progenitor Cells. Cell Mol Neurobiol 38, 517–527 (2018). https://doi.org/10.1007/s10571-017-0500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0500-6

Keywords

Navigation