Log in

Role of a DNA Damage Checkpoint Pathway in Ionizing Radiation-Induced Glioblastoma Cell Migration and Invasion

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR) induces a DNA damage response that includes activation of cell cycle checkpoints, leading to cell cycle arrest. In addition, IR enhances cell invasiveness of glioblastoma cells, among other tumor cell types. Using RNA interference, we found that the protein kinase MRK, previously implicated in the DNA damage response to IR, also inhibits IR-induced cell migration and invasion of glioblastoma cells. We showed that MRK activation by IR requires the checkpoint protein Nbs1 and that Nbs1 is also required for IR-stimulated migration. In addition, we show that MRK acts upstream of Chk2 and that Chk2 is also required for IR-stimulated migration and invasion. Thus, we have identified Nbs1, MRK, and Chk2 as elements of a novel signaling pathway that mediates IR-stimulated cell migration and invasion. Interestingly, we found that inhibition of cell cycle progression, either with the CDK1/2 inhibitor CGP74514A or by downregulation of the CDC25A protein phosphatase, restores IR-induced migration and invasion in cells depleted of MRK or Chk2. These data indicate that cell cycle progression, at least in the context of IR, exerts a negative control on the invasive properties of glioblastoma cells and that checkpoint proteins mediate IR-induced invasive behavior by controlling cell cycle arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ader I, Delmas C, Bonnet J, Rochaix P, Favre G, Toulas C, Cohen-Jonathan-Moyal E (2003) Inhibition of Rho pathways induces radiosensitization and oxygenation in human glioblastoma xenografts. Oncogene 22:8861–8869

    Article  PubMed  CAS  Google Scholar 

  • Anderson VE, Walton MI, Eve PD, Boxall KJ, Antoni L, Caldwell JJ, Aherne W, Pearl LH, Oliver AW, Collins I, Garrett MD (2011) CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors. Cancer Res 71:463–472

    Article  PubMed  CAS  Google Scholar 

  • Ashwell S, Janetka JW, Zabludoff S (2008) Kee** checkpoint kinases in line: new selective inhibitors in clinical trials. Expert Opin Investig Drugs 17:1331–1340

    Article  PubMed  CAS  Google Scholar 

  • Badiga AV, Chetty C, Kesanakurti D, Are D, Gujrati M, Klopfenstein JD, Dinh DH, Rao JS (2011) MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS ONE 6:e20614

    Article  PubMed  CAS  Google Scholar 

  • Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  PubMed  CAS  Google Scholar 

  • Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169

    Article  PubMed  CAS  Google Scholar 

  • Bolderson E, Richard DJ, Zhou BB, Khanna KK (2009) Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 15:6314–6320

    Article  PubMed  CAS  Google Scholar 

  • Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61:2207–2211

    PubMed  CAS  Google Scholar 

  • Cheng JC, Chou CH, Kuo ML, Hsieh CY (2006) Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene 25:7009–7018

    Article  PubMed  CAS  Google Scholar 

  • Evdokimova V, Tognon C, Ng T, Sorensen PH (2009) Reduced proliferation and enhanced migration: two sides of the same coin? Molecular mechanisms of metastatic progression by YB-1. Cell Cycle 8:2901–2906

    Article  PubMed  CAS  Google Scholar 

  • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847

    Article  PubMed  CAS  Google Scholar 

  • Giese A, Loo MA, Tran N, Haskett D, Coons SW, Berens ME (1996) Dichotomy of astrocytoma migration and proliferation. Int J Cancer 67:275–282

    Article  PubMed  CAS  Google Scholar 

  • Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636

    Article  PubMed  CAS  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M, Van Brocklyn J, Ostrowski MC, Chiocca EA, Lawler SE (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37:620–632

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Gotoh I, Adachi M, Nishida E (2001) Identification and characterization of a novel MAP kinase kinase kinase, MLTK. J Biol Chem 276:4276–4286

    Article  PubMed  CAS  Google Scholar 

  • Gross EA, Callow MG, Waldbaum L, Thomas S, Ruggieri R (2002) MRK, a mixed lineage kinase-related molecule that plays a role in gamma-radiation-induced cell cycle arrest. J Biol Chem 277:13873–13882

    Article  PubMed  CAS  Google Scholar 

  • Hess CF, Schaaf JC, Kortmann RD, Schabet M, Bamberg M (1994) Malignant glioma: patterns of failure following individually tailored limited volume irradiation. Radiother Oncol 30:146–149

    Article  PubMed  CAS  Google Scholar 

  • Imbach P, Capraro HG, Furet P, Mett H, Meyer T, Zimmermann J (1999) 2,6,9-Trisubstituted purines: optimization towards highly potent and selective CDK1 inhibitors. Bioorg Med Chem Lett 9:91–96

    Article  PubMed  CAS  Google Scholar 

  • Jung JW, Hwang SY, Hwang JS, Oh ES, Park S, Han IO (2007) Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer 43:1214–1224

    Article  PubMed  CAS  Google Scholar 

  • Jungmichel S, Stucki M (2010) MDC1: the art of kee** things in focus. Chromosoma 119:337–349

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Jiao X, Wang C, Ju X, Lu Y, Yuan L, Lisanti MP, Katiyar S, Pestell RG (2006) Cyclin D1 induction of cellular migration requires p27(KIP1). Cancer Res 66:9986–9994

    Article  PubMed  CAS  Google Scholar 

  • Liu TC, Huang CJ, Chu YC, Wei CC, Chou CC, Chou MY, Chou CK, Yang JJ (2000) Cloning and expression of ZAK, a mixed lineage kinase-like protein containing a leucine-zipper and a sterile-alpha motif. Biochem Biophys Res Commun 274:811–816

    Article  PubMed  CAS  Google Scholar 

  • Marcu LG (2010) Altered fractionation in radiotherapy: from radiobiological rationale to therapeutic gain. Cancer Treat Rev 36:606–614

    Article  PubMed  Google Scholar 

  • McClellan KA, Ruzhynsky VA, Douda DN, Vanderluit JL, Ferguson KL, Chen D, Bremner R, Park DS, Leone G, Slack RS (2007) Unique requirement for Rb/E2F3 in neuronal migration: evidence for cell cycle-independent functions. Mol Cell Biol 27:4825–4843

    Article  PubMed  CAS  Google Scholar 

  • Monferran S, Skuli N, Delmas C, Favre G, Bonnet J, Cohen-Jonathan-Moyal E, Toulas C (2008) Alphavbeta3 and alphavbeta5 integrins control glioma cell response to ionising radiation through ILK and RhoB. Int J Cancer 123:357–364

    Article  PubMed  CAS  Google Scholar 

  • Nirmala C, Jasti SL, Sawaya R, Kyritsis AP, Konduri SD, Ali-Osman F, Rao JS, Mohanam S (2000) Effects of radiation on the levels of MMP-2, MMP-9 and TIMP-1 during morphogenic glial–endothelial cell interactions. Int J Cancer 88:766–771

    Article  PubMed  CAS  Google Scholar 

  • Niyazi M, Siefert A, Schwarz SB, Ganswindt U, Kreth FW, Tonn JC, Belka C (2011) Therapeutic options for recurrent malignant glioma. Radiother Oncol 98:1–14

    Article  PubMed  Google Scholar 

  • Ohuchida K, Mizumoto K, Murakami M, Qian LW, Sato N, Nagai E, Matsumoto K, Nakamura T, Tanaka M (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64:3215–3222

    Article  PubMed  CAS  Google Scholar 

  • Park CM, Park MJ, Kwak HJ, Lee HC, Kim MS, Lee SH, Park IC, Rhee CH, Hong SI (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66:8511–8519

    Article  PubMed  CAS  Google Scholar 

  • Petrini JH, Stracker TH (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13:458–462

    Article  PubMed  CAS  Google Scholar 

  • Qian LW, Mizumoto K, Urashima T, Nagai E, Maehara N, Sato N, Nakajima M, Tanaka M (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8:1223–1227

    PubMed  CAS  Google Scholar 

  • Shapiro GI, Harper JW (1999) Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 104:1645–1653

    Article  PubMed  CAS  Google Scholar 

  • Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226

    Article  PubMed  CAS  Google Scholar 

  • Tosti E, Waldbaum L, Warshaw G, Gross EA, Ruggieri R (2004) The stress kinase MRK contributes to regulation of DNA damage checkpoints through a p38gamma-independent pathway. J Biol Chem 279:47652–47660

    Article  PubMed  CAS  Google Scholar 

  • Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, Dent P (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6:789–801

    Article  PubMed  CAS  Google Scholar 

  • Walker MD, Strike TA, Sheline GE (1979) An analysis of dose–effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731

    Article  PubMed  CAS  Google Scholar 

  • Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH, Hunt WE, MacCarty CS, Mahaley MS Jr, Mealey J Jr, Owens G, Ransohoff J, Robertson JT, Shapiro WR, Smith KR Jr, Wilson CB, Strike TA (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750

    PubMed  CAS  Google Scholar 

  • Zhai GG, Malhotra R, Delaney M, Latham D, Nestler U, Zhang M, Mukherjee N, Song Q, Robe P, Chakravarti A (2006) Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway. J Neurooncol 76:227–237

    Article  PubMed  CAS  Google Scholar 

  • Zhong Z, Yeow WS, Zou C, Wassell R, Wang C, Pestell RG, Quong JN, Quong AA (2010) Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Res 70:2105–2114

    Article  PubMed  CAS  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the NCI Grant CA100747 to R.R., funds from the Project to Cure Foundation to M. S., the Little Louie Foundation, the Bradley Zankel Foundation, Inc. to R.R. and institutional funds from the Feinstein Institute. I.V. was supported by a St. Baldrick’s Foundation Childhood Cancer Research Fellowship award. We also would like to thank Dr. Jeff Lipton and Dr. Mark Atlas (Cohen Children’s Medical Center of New York) for stimulating discussions and support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosamaria Ruggieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanan, I., Dong, Z., Tosti, E. et al. Role of a DNA Damage Checkpoint Pathway in Ionizing Radiation-Induced Glioblastoma Cell Migration and Invasion. Cell Mol Neurobiol 32, 1199–1208 (2012). https://doi.org/10.1007/s10571-012-9846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9846-y

Keywords

Navigation