Log in

Tcf7l2 is Tightly Controlled During Myelin Formation

  • Short Communication
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent, studies have shown that Tcf7l2, an important transcription factor in Wnt pathway, plays critical roles in oligodendrocyte development. In this article we report a study showing that Tcf7l2 is under tight regulation during myelin formation. We have found that during early development, Tcf7l2 mRNA appears much earlier than the protein, suggesting a regulation at the translational level. We induced demyelination in a mouse model by a dietary toxin, where remyelination followed after a few weeks, and found that Tcf7l2 protein was expressed specifically during the active remyelination phase. Similarly, in human patients with demyelination diseases, Tcf7l2 protein expression was specifically promoted in regions undergoing active remyelination. During remyelination, Tcf7l2 was only expressed in non-dividing oligodendrocyte precursors and was associated with modest levels of nuclear beta-catenin. We also documented that Tcf7l2 could form protein complex with Olig2, but not with Olig1. Our data showed that during myelin formation, Tcf7l2/beta-catenin is regulated temporally, spatially, and also at levels of expression. These data suggest a key role for Tcf7l2 in myelination/remyelination processes via a tightly controlled activation of Wnt/beta-catenin pathway and the interaction with Olig2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Arnett HA, Fancy SP, Alberta JA, Zhao C, Plant SR, Kaing S, Raine CS, Rowitch DH, Franklin RJ, Stiles CD (2004) bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306:2111–2115

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Zhu Q, Zheng K, Li H, Qi Y, Cao Q, Qiu M (2010) Co-localization of Nkx6.2 and Nkx2.2 homeodomain proteins in differentiated myelinating oligodendrocytes. Glia 58(4):458–468

    PubMed  Google Scholar 

  • Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173

    Article  PubMed  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  • Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, Zamanian JL, Foo LC, McManus MT, Barres BA (2010) Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65:597–611

    Article  PubMed  CAS  Google Scholar 

  • Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, Ibrahim A, Ligon KL, Rowitch DH, Barres BA (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–185

    Article  PubMed  CAS  Google Scholar 

  • Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585

    Article  PubMed  CAS  Google Scholar 

  • Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R, Franklin RJ, Rowitch DH (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Qi Y, Tan M, Cai J, Takebayashi H, Nakafuku M, Richardson W, Qiu M (2002) Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129:681–693

    PubMed  CAS  Google Scholar 

  • Fu H, Cai J, Clevers H, Fast E, Gray S, Greenberg R, Jain MK, Ma Q, Qiu M, Rowitch DH, Taylor CM, Stiles CD (2009) A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J Neurosci 29:11399–11408

    Article  PubMed  CAS  Google Scholar 

  • Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk DI, Tsung EF, Cai Z, Alberta JA, Cheng LP, Liu Y, Stenman JM, Valerius MT, Billings N, Kim HA, Greenberg ME, McMahon AP, Rowitch DH, Stiles CD, Ma Q (2004) Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306:2255–2257

    Article  PubMed  CAS  Google Scholar 

  • Grigoryan T, Wend P, Klaus A, Birchmeier W (2008) Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 22:2308–2341

    Article  PubMed  CAS  Google Scholar 

  • He Y, Dupree J, Wang J, Sandoval J, Li J, Liu H, Shi Y, Nave KA, Casaccia-Bonnefil P (2007) The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55:217–230

    Article  PubMed  CAS  Google Scholar 

  • Howng SY, Avila RL, Emery B, Traka M, Lin W, Watkins T, Cook S, Bronson R, Davisson M, Barres BA, Popko B (2010) ZFP191 is required by oligodendrocytes for CNS myelination. Genes Dev 24:301–311

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kim SH, Kim H, Chung AY, Cha YI, Kim CH, Huh TL, Park HC (2008) Frizzled 8a function is required for oligodendrocyte development in the zebrafish spinal cord. Dev Dyn 237:3324–3331

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131:1749–1758

    Article  PubMed  CAS  Google Scholar 

  • Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86

    Article  PubMed  CAS  Google Scholar 

  • Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, Rao M, Sussel L, Rubenstein J, Qiu M (2001) Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128:2723–2733

    PubMed  CAS  Google Scholar 

  • Shimizu T, Kagawa T, Wada T, Muroyama Y, Takada S, Ikenaka K (2005) Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev Biol 282:397–410

    Article  PubMed  CAS  Google Scholar 

  • Southwood C, He C, Garbern J, Kamholz J, Arroyo E, Gow A (2004) CNS myelin paranodes require Nkx6–2 homeoprotein transcriptional activity for normal structure. J Neurosci 24:11215–11225

    Article  PubMed  CAS  Google Scholar 

  • Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M (2002) Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16:165–170

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y (2002) The basic helix-loop-helix factor Olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12:1157–1163

    Article  PubMed  CAS  Google Scholar 

  • Wang SZ, Dulin J, Wu H, Hurlock E, Lee SE, Jansson K, Lu QR (2006) An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development 133:3389–3398

    Article  PubMed  CAS  Google Scholar 

  • Weise A, Bruser K, Elfert S, Wallmen B, Wittel Y, Wohrle S, Hecht A (2010) Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucleic Acids Res 38:1964–1981

    Article  PubMed  CAS  Google Scholar 

  • **n M, Yue T, Ma Z, Wu FF, Gow A, Lu QR (2005) Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 25:1354–1365

    Article  PubMed  CAS  Google Scholar 

  • Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12:829–838

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, Hoang T, Xu X, Mi QS, **n M, Wang F, Appel B, Lu QR (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65:612–626

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China Grant NO 30860131 and NIH grant R01NS059893, NIH 2P20RR017702-061A1.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10571_2011_9778_MOESM1_ESM.tif

Supplementary Fig. 1. Double staining of Tcf7l2 (red) and beta-catenin (green) in P5 mouse ventrolateral spinal cord. Arrows point to the double-positive oligodendrocyte cells with low level of nuclear beta-catenin; arrowheads points to motoneurons expressing high level of nuclear beta-catenin

10571_2011_9778_MOESM2_ESM.tif

Supplementary Fig. 2. Tcf7l2 plays important roles in myelin formation. Tcf7l2 is regulated by transcription factors including Olig1/2, Nkx6.1, Nkx2.2, and Sox10. Tcf7l2 protein also interacts with other proteins, such as Olig2 and beta-Catenin, and such interaction might in turn control the expression of myelin genes (MBP, PLP,and CNPase). This summary is based on the data of this article and Fu et al. 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, H., Kesari, S. & Cai, J. Tcf7l2 is Tightly Controlled During Myelin Formation. Cell Mol Neurobiol 32, 345–352 (2012). https://doi.org/10.1007/s10571-011-9778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9778-y

Keywords

Navigation