Log in

Alzheimer’s Disease—A Dysfunction in Cholesterol and Lipid Metabolism

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Strong etiological association exists between dysfunctional metabolism of brain lipids, age-related changes in the cerebral vasculature and neurodegenerative features characteristic of Alzheimer’s disease (AD) brain.

2. In this short review, recent experimental evidence for these associations is further discussed below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliev, G., Smith, M. A., Obrenovich, M. E., de la Torre, J. C., and Perry, G. (2003). Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Azheimer disease. Neurotox. Res. 5:491–504.

    PubMed  Google Scholar 

  • Bazan, N. G., and Flower, R. J. (2002). Lipid signals in pain control. Nature 420:135–138.

    Article  PubMed  Google Scholar 

  • Bazan, N. G., Colangelo, V., and Lukiw, W. J. (2002). Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins and Other Lipid Mediators 68–69:197–210.

    Article  PubMed  Google Scholar 

  • Baskin, F., Rosenberg, R. N., Fang, X., Hynan, L. S., Moore, C. B., Weiner, M., and Vega, G. L. (2003). Correlation of statin-increased platelet APP ratios and reduced blood lipids in AD patients. Neurology 60:2006–2007.

    PubMed  Google Scholar 

  • Bodovitz, S., Klein, W. L. (1996). Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 271:4436–4440.

    Article  PubMed  Google Scholar 

  • Cacabelos, R., Fernandez-Novoa, L., Lombardi, V., Corzo, L., Pichel, V., and Kubota, Y. (2003). Cerebrovascular risk factors in Alzheimer’s disease: Brain hemodynamics and pharmacogenomic implications. Neurol. Res. 25:567–580.

    Article  PubMed  Google Scholar 

  • Chaney, M. O., Baudry, J., Esh, C., Childress, J., Luehrs, D. C., Kokjohn, T. A., and Roher, A. E. (2003). A beta, aging, and Alzheimer’s disease: A tale, models, and hypotheses. Neurol. Res. 25:581–589.

    Article  PubMed  Google Scholar 

  • Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G., and Lukiw, W. J. (2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70:462–473.

    Article  PubMed  Google Scholar 

  • Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., and Mattson, M. P. (2004). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 101:2070–2075.

    Article  PubMed  Google Scholar 

  • Dietschy, J. M., and Turley, S. D. (2001). Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12:105–112.

    Article  PubMed  Google Scholar 

  • Edwards, J. E., and Moore, R. A. (2003). Statins in hypercholesterolaemia: A dose-specific meta-analysis of lipid changes in randomised, double blind trials. BMC Family Pract4: 18.

    Article  Google Scholar 

  • Fitzpatrick, A. L., Kuller, L. H., Ives, D. G., Lopez, O. L., Jagust, W., Breitner, J. C., Jones, B., Lyketsos, C., and Dulberg, C. (2004). Incidence and prevalence of dementia in the Cardiovascular Health Study. J. Am. Geriatr. Soc. 52:195–204.

    Article  PubMed  Google Scholar 

  • Flood, D. G., Reaume, A. G., Dorfman, K. S., Lin, Y. G., Lang, D. M., Trusko, S. P., Savage, M. J., Annaert, W. G., De Strooper, B., Siman, R., and Scott, R. W. (2002). FAD mutant PS-1 gene-targeted mice: increased Abeta 42 and Abeta deposition without APP overproduction. Neurobiol. Aging 23:335–348.

    Article  PubMed  Google Scholar 

  • Frears, E. R., Stephens, D. J., Walters, C. E., Davies, H., and Austen, B. M. (1999). The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10:1699–1705.

    PubMed  Google Scholar 

  • Fukumoto, H., Rosene, D. L., Moss, M. B., Raju, S., Hyman, B. T., and Irizarry, M. C. (2004). Beta-secretase activity increases with aging in human, monkey, and mouse brain. Am. J. Pathol. 164:719–725.

    PubMed  Google Scholar 

  • Gibson Wood, W., Eckert, G. P., Igbavboa, U., and Muller, W. E. (2003). Amyloid beta-protein interactions with membranes and cholesterol: Causes or casualties of Alzheimer’s disease. Biochim. Biophys. Acta 1610:281–290.

    PubMed  Google Scholar 

  • Grant, W. B. (1999). Dietary links to Alzheimer’s Disease: 1999 update, J. Alzheimer Dis. 1:197–201.

    Google Scholar 

  • Hoglund, K., Wiklund, O., Vanderstichel, H., Eikenberg, O., Vanmechelen, E., and Blennow, K. (2004). Plasma levels of beta-amyloid(1–40), beta-amyloid(1–42), and total beta-amyloid remain unaffected in adult patients with hypercholesterolemia after treatment with statins. Arch Neurol. 61:333–337.

    Article  PubMed  Google Scholar 

  • Jankowsky, J. L., Fadale, D. J., Anderson, J., Xu, G. M., Gonzales, V., Jenkins, N. A., Copeland, N. G., Lee, M. K., Younkin, L. H., Wagner, S. L., Younkin, S. G., and Borchelt, D. R. (2004). Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: Evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13:159–170.

    Article  PubMed  Google Scholar 

  • Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., and Drachman, D. A. (2000). Statins and the risk of dementia. Lancet 356:1627–1631.

    Article  PubMed  Google Scholar 

  • Kolsch, H., Lutjohann, D., von Bergmann, K., and Heun, R. (2003). The role of 24S-hydroxycholesterol in Alzheimer’s disease. J. Nutr. Health Aging 7:37–41.

    PubMed  Google Scholar 

  • Launer, L. (2003). Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer’s disease: Dissecting the epidemiological evidence. Drugs 63:731–739.

    PubMed  Google Scholar 

  • Lukiw, W. J. (2004). Gene Expression Profiling in Fetal, Aged and Alzheimer Hippocampus—A Continuum of Stress-Related Signaling. Neurochem. Res. 29:1287–1297.

    Article  PubMed  Google Scholar 

  • Lutjohann, D., and von Bergmann, K. (2003). 24S-hydroxycholesterol: A marker of brain cholesterol metabolism. Pharmacopsychiatry 36:S102–S106.

    Article  PubMed  Google Scholar 

  • Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., Hardy, M., Gimenez, J. M., Chiang, N., Serhan, C. N., and Bazan, N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817.

    Article  PubMed  Google Scholar 

  • Mason, R. P., Shoemaker, W. J., Shajenko, L., Chambers, T. E., and Herbette, G. (1992). Evidence for changes in the Alzheimer’s disease brain cortical membrane structure mediated by cholesterol. Neurobiol. Aging 13:413–419.

    Article  PubMed  Google Scholar 

  • McGeer, P. L., Schulzer, M., and McGeer, E. G. (1996). Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: A review of 17 epidemiologic studies. Neurology 47:425–432.

    PubMed  Google Scholar 

  • Miller, L. J., and Chacko, R. (2004). The role of cholesterol and statins in Alzheimer’s disease. Ann. Pharmacother. 38:91–98.

    Article  PubMed  Google Scholar 

  • Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee, L. M., Vogel, F. S., Hughes, J. P., van Belle, G., and Berg, L. (1991). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486.

    PubMed  Google Scholar 

  • Mizuno, T., Haass, C., Michikawa, M., and Yanagisawa, K. (1998). Cholesterol-dependent generation of a unique amyloid beta-protein from atypically missorted amyloid precursor protein in MDCK cells. Biochem. Biophys. Acta 1373:119–130.

    PubMed  Google Scholar 

  • Murphy, M. P., Das, P., Nyborg, A. C., Rochette, M. J., Dodson, M. W., Loosbrock, N. M., Souder, T. M., McLendon, C., Merit, S. L., Piper, S. C., Jansen, K. R., and Golde, T. E. (2003). Overexpression of nicastrin increases Abeta production. FASEB J. 17:1138–1140.

    PubMed  Google Scholar 

  • Newschaffer, C. J., Bush, T. L., and Hale, W. E. (1992). Aging and total cholesterol levels: Cohort, period and survivorship effects. Am. J. Epidemiol. 136:23–34.

    PubMed  Google Scholar 

  • Notkola, I. L., Sulkava, R., Pekkanen, J., Erkinjuntti, T., Ehnholm, C., Kivinen, P., Tuomilehto, J., and Nissinen, A. (1998). Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology 17:14–20.

    Article  PubMed  Google Scholar 

  • Pappolla, M. A., Omar, R. A., Kim, K. S., and Robakis, N. K. (1992). Immunohistochemical evidence of oxidative stress in Alzheimer’s disease. Am. J. Pathol. 140: 621–628.

    PubMed  Google Scholar 

  • Pappolla, M. A., Chyan, Y. J., Omar, R. A., Hsiao, K., Perry, G., Smith, M. A., and Bozner, P. (1998). Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: A chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J. Pathol. 152:871–877.

    PubMed  Google Scholar 

  • Pappolla, M. A., Bryant-Thomas, T. K., Herbert, D., Pacheco, J., Fabra Garcia, M., Manjon, M., Girones, X., Henry, T. L., Matsubara, E., Zambon, D., Wolozin, B., Petanceska, S. S., Sano, M., Cruz-Sanchez, F. F., Thal, L. J., and Refolo, L. M. (2003). Hypercholesterolemia is an Early Risk Factor for the Development of Alzheimer Amyloid Pathology. Neurology 61:199–205.

    PubMed  Google Scholar 

  • Park, I. H., Hwang, E. M., Hong, H. S., Boo, J. H., Oh, S. S., Lee, J., Jung, M. W., Bang, O. Y., Kim, S. U., and Mook-Jung, I. (2003). Lovastatin enhances Abeta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging. 24:637–643.

    Article  PubMed  Google Scholar 

  • Pasternak, S. H., Callahan, J. W., and Mahuran, D. J. (2004). The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer’s disease: Reexamining the spatial paradox from a lysosomal perspective. J. Alzheimers Dis. 6:53–65.

    PubMed  Google Scholar 

  • Petanceska, S. S., DeRosa, S., Sharma, A., Diaz, N., Duff, K., Tint, S. G., Refolo, L. M., and Pappolla, M. (2003). Changes in apolipoprotein E expression in response to dietary and pharmacological modulation of cholesterol. J. Mol. Neurosci. 20:395–406.

    Article  PubMed  Google Scholar 

  • Puglielli, L., Tanzi, R. E., and Kovacs, D. M. (2003). Alzheimer’s disease: The cholesterol connection. Nat. Neurosci. 6:345–351.

    Article  PubMed  Google Scholar 

  • Qin, W., Ho, L., Pompl, P. N., Peng, Y., Zhao, Z., **ang, Z., Robakis, N. K., Shioi, J., Suh, J., and Pasinetti, G. M. (2003). Cyclooxygenase (COX)-2 and COX-1 potentiate beta-amyloid peptide generation through mechanisms that involve gamma-secretase activity. J. Biol. Chem. 278:50970–50977.

    Article  PubMed  Google Scholar 

  • Ravona-Springer, R., Davidson, M., and Noy, S. (2003). The role of cardiovascular risk factors in Alzheimer’s disease. CNS Spectr. 8:824–833.

    PubMed  Google Scholar 

  • Refolo, L. M., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G. S., Sambamurti, K., Duff, K., and Pappolla, M. A. (2000). Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7:321–331.

    Article  PubMed  Google Scholar 

  • Rohe, A. E., Kuo, Y. M., Kokjohn, K. M., Emmerling, M. R., and Gracon, S. (1999). Amyloid and lipids in the pathology of Alzheimer disease. Amyloid 6:136–145.

    PubMed  Google Scholar 

  • Schenk, D. (2000). Alzheimer’s disease: A partner for presenilin. Nature 407:48–54.

    Article  PubMed  Google Scholar 

  • Sidera, C., Parsons, R., and Austen, B. (2004). Proteolytic cascade in the amyloido-genesis of Alzheimer’s disease. Biochem. Soc. Trans. 32:33–36.

    Article  PubMed  Google Scholar 

  • Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. (1998). Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Pro. Natl. Acad. Sci. USA 95:6460–6464.

    Article  Google Scholar 

  • Sparks, D. L., Martin, T. A., Gross, D. R., and Hunsaker, J. C. III (2000). Link between heart disease, cholesterol, and Alzheimer’s disease: A review. Microsc. Res. Tech. 50:287–290.

    Article  PubMed  Google Scholar 

  • Strittmatter, W. J., Saunders, A. M., Schmeche, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:1977–1981.

    PubMed  Google Scholar 

  • Stuve, O., Youssef, S., Steinman, L., and Zamvil, S. S. (2003). Statins as potential therapeutic agents in neuroinflammatory disorders. Curr. Opin. Neurol. 16:393–401.

    Article  PubMed  Google Scholar 

  • Weir, M. R., Sperling, R. S., Reicin, A., and Gert, B. J. (2003). Selective COX-2 inhibition and cardiovascular effects: A review of the rofecoxib program. Am. Heart J. 146:591–604.

    Article  PubMed  Google Scholar 

  • Wilson, H. L., Schwartz, D. M., Bhatt, H. R., McCulloch, C. E., and Duncan, J. L. (2004). Statin and aspirin therapy are associated with decreased rates of choroidal neovascularization among patients with age-related macular degeneration. Am. J. Ophthalmol. 137:615–624.

    Article  PubMed  Google Scholar 

  • Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., and Siegel, G. (2000). Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57:1439–1443.

    Article  PubMed  Google Scholar 

  • Wolozin, B. (2003). Cyp46 (24S-cholesterol hydroxylase): A genetic risk factor for Alzheimer disease. Arch. Neurol. 60:29–35.

    PubMed  Google Scholar 

  • Wood, W. G., Schroeder, F., Avdulov, N. A., Chochina, S. V., and Igbavboa, U. (1999). Recent advances in brain cholesterol dynamics: Transport, domains and Alzheimer’s disease. Lipids 34:225–234.

    PubMed  Google Scholar 

  • Zatta, P., Zambenedetti, P., Stella, M. P., and Licastro, F. (2002). Astrocytosis, microgliosis, metallothionein-I-II and amyloid expression in high cholesterol-fed rabbits. J. Alzheimers Dis. 4:1–9.

    PubMed  Google Scholar 

  • Zlokovic, B. V., Yamada, S., Holtzman, D., Ghiso, J., and Frangione, B. (2000). Clearance of amyloid beta-peptide from brain: Transport or metabolism? Nat. Med. 6:718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Lukiw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukiw, W.J., Pappolla, M., Pelaez, R.P. et al. Alzheimer’s Disease—A Dysfunction in Cholesterol and Lipid Metabolism. Cell Mol Neurobiol 25, 475–483 (2005). https://doi.org/10.1007/s10571-005-4010-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-4010-6

Key Words

Navigation