Log in

Effect of the chemical and structural characteristics of pulps of Eucalyptus and Pinus on the deconstruction of the cell wall during the production of cellulose nanofibrils

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The species Eucalyptus globulus, Eucalyptus nitens and Pinus radiata, are important supplies for the production of cellulose pulp in the world market, which can be used for the production of cellulose nanofibrils (CNFs). Understanding how the characteristics of different raw materials affect the production and final properties of nanofibrillated celluloses is very useful, both for the pulp industry and for the end user. The aim of this research was to determine how the chemical and structural differences of the commercial Kraft pulps of E. globulus, E. nitens and P. radiata affect the production and the morphological and rheological characteristics of the CNFs produced through an enzymatic-mechanical process. On one hand, the results showed that pine fibers were easier to deconstruct than eucalyptus fibers, however, pine CNFs were found to have the largest fibril width and a lower aspect ratio (length /width). On the other hand, the pulp of E. globulus, was the one that obtained a better aspect ratio and higher intrinsic viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aksenov AS, Tyshkunova IV, Poshina DN, Guryanova AA, Chukhchin DG, Sinelnikov IG, Synitsyn AP (2020) Biocatalysis of Industrial Kraft Pulps: Similarities and Differences between Hardwood and Softwood Pulps in Hydrolysis by Enzyme Complex of Penicillium verruculosum. Catalysts 10(5):536

    Article  CAS  Google Scholar 

  • Albornoz-Palma G, Betancourt F, Mendonça RT, Chinga-Carrasco G, Pereira M (2020a) Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions. Carbohydrate Polymers, 115588

  • Albornoz-Palma G, Ching D, Valerio O, Mendonça RT, Pereira M (2020b) Effect of lignin and hemicellulose on the properties of lignocellulose nanofibril suspensions. Cellulose 27:10631–10647

    Article  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Antes R, Joutsimo OP (2015a) Fiber surface and paper technical properties of Eucalyptus globulus and Eucalyptus nitens pulps after modified cooking and bleaching. BioResources 10(1):1599–1616

    Article  Google Scholar 

  • Antes R, Joutsimo OP (2015b) Effect of modified cooking on bleachability of Eucalyptus globulus and Eucalyptus nitens. BioResources 10(1):597–612

    Article  Google Scholar 

  • Aguayo MG, Quintupill L, Castillo R, Baeza J, Freer J, Mendonça RT (2010) Determination of differences in anatomical and chemical characteristics of tension and opposite wood of 8-year-old Eucalyptus globulus. Maderas Ciencia y tecnologia 12(3):241–251

    CAS  Google Scholar 

  • Andrade A, Pereira S (2019) Producción y usos de la celulosa nanofibrilada y microfibrilada: ‘‘Métodos de deconstrucción de la pared celular”. Transferencia tecnológica sobre aplicaciones de nanocelulosa en Iberoamérica), Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED), 1st edn, pp 36–38

  • Barrera Pedraza D (2018) Celulosa chilena: Avances y perspectiva de su comercio exterior: enero de 2018. Oficina deEstudios y Politicas Agrarias (ODEPA). Chile, pp 9–12

  • Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohyd Polym 86(3):1198–1206

    Article  CAS  Google Scholar 

  • Carrillo I, Mendonça RT, Ago M, Rojas OJ (2018a) Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25(2):1011–1029

    Article  CAS  Google Scholar 

  • Carrillo I, Vidal C, Elissetche JP, Mendonça RT (2018b) Wood anatomical and chemical properties related to the pulpability of Eucalyptus globulus: a review. Southern Forests: a Journal of Forest Science 80(1):1–8

    Article  Google Scholar 

  • Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20(6):2863–2875

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1):53–58

    Article  CAS  Google Scholar 

  • Chen Y, Geng B, Ru J, Tong C, Liu H, Chen J (2017) Comparative characteristics of TEMPO-oxidized cellulose nanofibers and resulting nanopapers from bamboo, softwood, and hardwood pulps. Cellulose 24(11):4831–4844

    Article  CAS  Google Scholar 

  • Chen M, **a L, Xue P (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeter Biodegrad 59(2):85–89

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G, Yu Y, Diserud O (2011) Quantitative electron microscopy of cellulose nanofibril structures from Eucalyptus and Pinus radiata kraft pulp fibers. Microsc Microanal 17(4):563

    Article  CAS  PubMed  Google Scholar 

  • Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6(1):1–7

    Article  Google Scholar 

  • De Carvalho DM, Moser C, Lindström ME, Sevastyanova O (2019) Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties. Ind Crops Prod 127:203–211

    Article  CAS  Google Scholar 

  • Delgado Aguilar M (2015) Nanotecnología en el sector papelero: mejoras en calidad y permanencia de las fibras de alto rendimiento y secundarias en una economía circular mediante el uso de nanofibras y el refino enzimático (tesis doctoral), Universitat de Girona

  • Duchesne I, Hult E, Molin U, Daniel GI, Lennholm H (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13 C-NMR. Cellulose 8(2):103–111

    Article  CAS  Google Scholar 

  • Espinosa E, Tarres Q, Delgado-Aguilar M, Gonzalez I, Mutje P, Rodriguez A (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23(1):837–852

    Article  CAS  Google Scholar 

  • Ferraz A, Baeza J, Rodriguez J, Freer J (2000) Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Biores Technol 74(3):201–212

    Article  CAS  Google Scholar 

  • Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47(8):2609–2679

    Article  CAS  PubMed  Google Scholar 

  • Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM (2015) Basic effects of pulp refining on fiber properties: a review. Carbohydr Polym 115:785–803

    Article  CAS  PubMed  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  • Gómez EA, Ríos LA, Peña JD (2012) Madera, un potencial material lignocelulósico para la producción de biocombustibles en Colombia. Inform Tecnol 23(6):73–86

    Article  Google Scholar 

  • He M, Yang G, Chen J, Ji X, Wang Q (2018) Production and characterization of cellulose nanofibrils from different chemical and mechanical pulps. J Wood Chem Technol 38(2):149–158

    Article  CAS  Google Scholar 

  • Hinestroza J, Netravali AN (2014) Cellulose based composites: new green nanomaterials. Wiley, Hoboken

    Book  Google Scholar 

  • Honorato C, Kumar V, Liu J, Koivula H, Xu C, Toivakka M (2015) Transparent nanocellulose-pigment composite films. J Mater Sci 50(22):7343–7352

    Article  CAS  Google Scholar 

  • Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145

    Article  CAS  Google Scholar 

  • Igartúa D, Monteoliva S (2010) Densidad básica, longitud de fibras y crecimiento en dos procedencias de Eucalyptus globulus en Argentina. Bosque (Valdivia) 31(2):150–156

    Article  Google Scholar 

  • ISO 5263–1 (2004) Pulps–Laboratory wet disintegration–Part 1: Disintegration of chemical pulps

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9(3):1022–1026

    Article  CAS  Google Scholar 

  • Iwamoto S, Lee S-H, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73

    Article  CAS  Google Scholar 

  • **guang Hu, Tian D, Renneckar S, Saddler JN (2018) Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Nat Sci Rep 8:3195

    Google Scholar 

  • Kumagai A, Endo T (2018) Comparison of the surface constitutions of hemicelluloses on lignocellulosic nanofibers prepared from softwood and hardwood. Cellulose 25(7):3885–3897

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose: Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764

    Article  CAS  Google Scholar 

  • Li Q (2012) Nanocellulose: preparation, characterization, supramolecular modeling, and its life cycle assessment (Doctoral dissertation, Virginia Tech)

  • Li W, Wang R, Liu S (2011) Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis. BioResources 6(4):4271–4281

    CAS  Google Scholar 

  • Loijas M (2010) Factors affecting the axial force in low-consistency refining. Tampere University of Applied Science, Tampere

    Google Scholar 

  • Martínez P, Pereira M, Mendonça RT (2015) Retention and structure of xylans from E. globulus genotypes with different pulpwood characteristics. J Wood Chem Technol 35(2):129–136

    Article  Google Scholar 

  • Mendonça RT, Jara JF, Gonzalez V, Elissetche JP, Freer J (2008) Evaluation of white root fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol 35:1323–1313

    Article  PubMed  Google Scholar 

  • Miranda I, Almeida MH, Pereira H (2001) Variation of fibre biometry in different provenances of E. globulus Labill. Appita J 54(3):272–280

    Google Scholar 

  • Naderi A, Lindström T (2015) Rheological measurements on nanofibrillated cellulose systems: a science in progress. In: Mondal MIH (ed) Cellulose and cellulose derivatives: synthesis, modification and applications. Nova Science Publisher, Inc. pp 187–202

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8(6):1934–1941

    Article  Google Scholar 

  • Raymond CA, Muneri A (2001) Nondestructive sampling of E. globulus and E. nitens for wood properties. I. Basic density. Wood Sci Technol 35:27–39

    Article  CAS  Google Scholar 

  • Reyes P, Aguayo MG, Martínez P, Freer J, Pereira M, Mendonça RT (2012) Biorefinería forestal: Extracción de hemicelulosas de Pinus radiata para la obtención de bioetanol integrada a la producción de celulosa kraft

  • Saarinen T, Haavisto S, Sorvari A, Salmela J, Seppälä J (2014) The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose 21(3):1261–1275

    Article  CAS  Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219

    Article  CAS  Google Scholar 

  • Stoere P, Nazhad M, Kerekes R (2001) Experimental study of the effect of refining on paper formation. Tappi J 84(7):1–9

    Google Scholar 

  • Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and P. radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromol 16(7):2127–2131

    Article  CAS  Google Scholar 

  • Tarrés Q, Saguer E, Pèlach MA, Alcalà M, Delgado-Aguilar M, Mutjé P (2016a) The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose 23(2):1433–1445

    Article  Google Scholar 

  • Tarrés Q, Delgado-Aguilar M, Pèlach M, González I, Boufi S, Mutjé P (2016b) Remarkable increase of paper strength by combining enzymatic cellulose nanofibers in bulk and tempo-oxidized nanofibers as coating. Cellulose 23:3939–3950

    Article  Google Scholar 

  • Tokimatsu K, Tamura S, Kojima H (1992) Effects of multiple modes on Rayleigh wave dispersion characteristics. J Geotech Eng 118(10):1529–1543

    Article  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR Micro-fibrillated cellulose and process for producing it. 1985; Patent no CH 648071 (A5)

  • Vallejos María Evangelina (2019) La celulosa nanofibrilada en el contexto de la biorrefinería.Transferencia tecnológica sobre aplicaciones de nanocelulosa en Iberoamérica), Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED), 1st edn, pp 2–16

Download references

Acknowledgments

We thank to: ANID-Subdirección de Capital Humano/Doctorado Nacional/2020-21202153, ANID-Subdirección de Capital Humano/Doctorado Nacional/2018-21181080, the ASIF laboratory (Department of Chemical Engineering, Universidad de Concepción, Eng. Carlos Oliveros, FPC Papeles SpA (Eng. Juan Fritz, PhD. Eduardo Izquierdo and quality control laboratory) and project FONDECYT Nº1201042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Pereira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, A., Henríquez-Gallegos, S., Albornoz-Palma, G. et al. Effect of the chemical and structural characteristics of pulps of Eucalyptus and Pinus on the deconstruction of the cell wall during the production of cellulose nanofibrils. Cellulose 28, 5387–5399 (2021). https://doi.org/10.1007/s10570-021-03848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03848-0

Keywords

Navigation