Log in

Crease resistance improvement of hemp biofiber fabric via sol–gel and crosslinking methods

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, crease resistance finish with sol–gel method, crosslinking method and commercial crease resistant finish products were applied to hemp biofiber cellulosic fabrics and the effects of these studied methods on hemp fabrics were investigated by physical performance tests and characterization analyses. In addition, chitosan biopolymer was also studied to investigate its effects on performance properties of hemp cellulosic fabrics. It was determined that sol–gel method and crosslinking method could be used to improve crease resistance property of hemp fabrics. Both sol–gel and crosslinking methods exhibited comparable close results to studied commercial crease resistant finish products, but sol–gel method was found to be better than crosslinking method especially when tensile and tear strength values were considered. The crease recovery angle values of these two methods were found to be quite close to the values of commercial products, on the other hand, chitosan biopolymer addition was not observed to be efficient in terms of crease resistance and physical performance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alongi J, Malucelli G (2013) Thermal stability, flame retardancy and abrasion resistance of cotton and cotton-linen blends treated by sol-gel silica coatings containing alumina micro- or nano-particles. Polym Degrad Stab 98:1428–1438

    Article  CAS  Google Scholar 

  • Ammayappan L, Nayak LK, Ray DP, Das S, Roy AK (2013) Functional finishing of jute textiles—an overview in India. J Nat Fibers 10:390–413

    Article  CAS  Google Scholar 

  • Arik B (2013) Investigation of chitosan applicability in medical textiles by using different application methods (Ph.D. thesis). Ege University Graduate School of Natural and Applied Science, Izmir, Turkey

  • Arik B (2015) Latest developments on crease resistance processes for cellulosic fabrics. Pamukkale Univ J Eng Sci 21(7):296–305

    Article  Google Scholar 

  • Arik B, Yavas A, Avinc O (2017) Antibacterial and wrinkle resistance improvement on nettle biofiber using chitosan and BTCA. Fibres Text East Eur 3(123):106–111

    Article  Google Scholar 

  • Bajaj P (2002) Finishing of textile materials. J Appl Polym Sci 83:631–659

    Article  CAS  Google Scholar 

  • Bilgen M (2005) Wrinkle recovery for cellulosic fabric by means of ionic crosslinking (M.Sc. Thesis). Graduate Faculty of North Carolina State University, North Carolina, USA

  • Brancatelli G, Colleoni C, Massafra MR, Rosace G (2011) Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polym Degrad Stab 96:483–490

    Article  CAS  Google Scholar 

  • Brzezinski S, Kowalczyk D, Borak B, Jasiorski M, Tracz A (2012) Applying the sol-gel method to the deposition of nanocoats on textiles to improve their abrasion resistance. J Appl Polym Sci 125:3058–3067

    Article  CAS  Google Scholar 

  • Carty P, Byrne MS (1991) The chemical and mechanical finishing of textile materials, 2nd edn. Newcastle upon Tyne Polytechnic Products Ltd, Newcastle

    Google Scholar 

  • Clarke RC (2010) Traditional fiber hemp (Cannabis) production, processing, yarn making, and weaving strategies—functional constraints and regional responses. Part 1. J Nat Fibers 7:118–153

    Article  CAS  Google Scholar 

  • Dehabadi VA, Buschmann HJ, Gutmann JS (2013) Study of easy care and biostatic properties of finished cotton fabric with polyamino carboxylic acids. J Text Inst 104(4):414–418

    Article  CAS  Google Scholar 

  • Fiscus G, Grunenwald D (1995) Textile finishing a complete guide, 1st edn. Editions High Textil, Sausheim

    Google Scholar 

  • Fouda MMG, El Shafei A, Sharaf S, Hebeish A (2009) Microwave curing for producing cotton fabrics with easy care and antibacterial properties. Carbohyd Polym 77:651–655

    Article  CAS  Google Scholar 

  • Garside P, Wyeth P (2006) Identification of cellulosic fibres by FTIR spectroscopy differentiation of flax and hemp by polarized ATR FTIR. Stud Conserv 51(3):205–211

    Article  CAS  Google Scholar 

  • Gashti MP, Alimohammadi F, Shamei A (2012) Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating. Surf Coat Technol 206:3208–3215

    Article  CAS  Google Scholar 

  • Gedik G, Avinc O (2018) Bleaching of hemp (Cannabis Sativa L.) fibers with peracetic acid for textiles industry purposes. Fibers Polym 19(1):82–93

    Article  CAS  Google Scholar 

  • Gedik G, Avinç OO, Yavaş A (2010) Hemp fiber properties and its advantages in textile industry. Electron J Text Technol 4(3):39–48

    Google Scholar 

  • Gürsoy NÇ, Armağan OG, Şahin UK, Gül M (2010) Effects of alternative pre-treatments on performance of durable press finished fabric. J Text Appar Tekst Konfeks 20(4):336–342

    Google Scholar 

  • Harifi T, Montazer M (2012) Past present and future prospects of cotton cross-linking: new insight into nanoparticles. Carbohyd Polym 88:1125–1140

    Article  CAS  Google Scholar 

  • Hebeish A, Hashem M, Abdel-Rahman A, El-Hilw ZH (2006) Improving easy care nonformaldehyde finishing performance using polycarboxylic acids via precationization of cotton fabric. J Appl Polym Sci 100:2697–2704

    Article  CAS  Google Scholar 

  • Hebeish A, Abdel-Mohdy FA, Fouda MMG, Elsaid Z, Essam S, Tamam GH, Drees EA (2011) Green synthesis of easy care and antimicrobial cotton fabrics. Carbohyd Polym 86:1684–1691

    Article  CAS  Google Scholar 

  • Hill DJ, Hall ME, Holmes DA, Lomas M, Padmore K (1993) An introduction to textiles volume IV textile wet processing. Comett Eurotex, Bolton

    Google Scholar 

  • Hwang MS, Ji DS (2012) The effects of yarn number and liquid ammonia treatment on the physical properties of hemp woven fabrics. Fibers Polym 13(10):1335–1340

    Article  CAS  Google Scholar 

  • Ibrahim NA, Hashem MM, Eid MA, Refai R, El-Hossamy M, Eid BM (2010) Eco-friendly plasma treatment of linen-containing fabrics. J Text Inst 101(12):1035–1049

    Article  CAS  Google Scholar 

  • Ibrahim NA, Eid BM, Abd El-Aziz E, Abou Elmaaty TM (2013) Functionalization of linen/cotton pigment prints using inorganic nano structure materials. Carbohyd Polym 97(2):537–545

    Article  CAS  Google Scholar 

  • Kostic M, Pejic B, Skundric P (2008) Quality of chemically modified hemp fibers. Biores Technol 99:94–99

    Article  CAS  Google Scholar 

  • Kozlowski R, Baraniecki P, Barriga-Bedoya J (2005) Bast fibres (flax, hemp, jute, ramie, kenaf, abaca). In: Blackburn RS (ed) Biodegradable and sustainable fibres, Chap 2. Woodhead Publishing, England, pp 36–86

  • Lacasse K, Baumann W (2004) Textile chemicals environmental data and facts, 1st edn. Springer, Heidelberg

    Book  Google Scholar 

  • Lam YL, Kan CW, Yuen CWM (2010) Wrinkle-resistant finishing of cotton fabric with BTCA: the effect of co-catalyst. Text Res J 81(5):482–493

    Article  CAS  Google Scholar 

  • Lam YL, Kan CW, Yuen CWM (2011) Physical and chemical analysis of plasma-treated cotton fabric subjected to wrinkle-resistant finishing. Cellulose 18:493–503

    Article  CAS  Google Scholar 

  • Lewis DM, Voncina B (1997) Durable press finishing of cotton with polycarboxylic acids. II. Ester crosslinking of cotton with dithiosuccinic acid derivative of S-Triazine. J Appl Polym Sci 66:171–177

    Article  CAS  Google Scholar 

  • Li F, **ng Y, Ding X (2008) Silica xerogel coating on the surface of natural and synthetic fabrics. Surf Coat Technol 202:721–4727

    Google Scholar 

  • Li J, Feng J, Zhang H, Zhang J (2010) Wear properties of hemp, ramie and linen fabrics after liquid ammonia/crosslinking treatment. Fibres Text East Eur 18(5):81–85

    CAS  Google Scholar 

  • Liu L, Li B, **ang Y, Zhang R, Yu J, Fang B (2018) Effect of growth period and sampling section on the chemical composition and microstructure of raw hemp fibers. BioResources 13(1):1961–1976

    CAS  Google Scholar 

  • Nazari A, Montazer M, Rashidi A, Yazdanshenas M, Anary-Abbasinejad M (2009) Nano TiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with poly carboxylic acids under UV and high temperature. Appl Catal A 371:10–16

    Article  CAS  Google Scholar 

  • Needles HL (1986) Textile fibers dyes finishes and processes a concise guide, 1st edn. Noyes, New Jersey

    Google Scholar 

  • Onar N, Mete G (2016) Development of water repellent cotton fabric with application of ZnO Al2O3 TiO2 and ZrO2 nanoparticles modified with ormosils. J Text Appar Tekst Konfeks 26(3):295–302

    Google Scholar 

  • Onar N, Mete G, Aksit A, Kutlu B, Çelik E (2015) Water- and oil-repellency properties of cotton fabric treated with silane, Zr, Ti based nanosols. Int J Text Sci 4(4):84–96

    Google Scholar 

  • Pejic BM, Kostic MM, Skundric PD, Praskalo JZ (2008) The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. Biores Technol 99:7152–7159

    Article  CAS  Google Scholar 

  • Perkins WS (1996) Textile coloration and finishing, 1st edn. Carolina Academic Pres, North Carolina USA

    Google Scholar 

  • Rachini A, Troedec ML, Peyratout C, Smith A (2012) Chemical modification of hemp fibers by silane coupling agents. J Appl Polym Sci 123:601–610

    Article  CAS  Google Scholar 

  • Ramesh M (2018) Hemp, jute, banana, kenaf, ramie, sisal fibers. In: Handbook of properties of textile and technical fibres (2nd edn). A volume in The Textile Institute Book Series, vol 9, pp 301–325

  • Roe BG (2008) Durable non-fluorine water-repellent fabric finishing: surface treatment using silica nanoparticulates and mixed silanes (M.Sc. Thesis). Graduate Faculty of North Carolina State University, Raleigh, North Carolina, USA

  • Sauperl O, Stana-Kleinschek K (2010) Differences between cotton and viscose fibers crosslinked with BTCA. Text Res J 80(4):383–392

    Article  CAS  Google Scholar 

  • Schramm C, Rinderer B (2015) Non-formaldeyhde crease-resistant modification of cellulosic material by means of an organotrialkoxysilane and metal alkoxides. Cellulose 22:2811–2824

    Article  CAS  Google Scholar 

  • Schramm C, Binder WH, Tessadri R (2004) Durable press finishing of cotton fabric with 1234-butanetetracarboxylic acid and TEOS/GPTMS. J Sol-Gel Sci Technol 29:155–165

    Article  CAS  Google Scholar 

  • Schramm C, Rinderer B, Binder WH, Tessadri R, Duelli H (2005) Treatment of 1,3-dimethylol-4,5-dihydroxyimidazolidine-2-one Finished cellulosic material with tetraethoxysilane or glycidyloxypropyl-trimethoxysilane solutions. J Mater Sci 40:1883–1891

    Article  CAS  Google Scholar 

  • Shahzad A (2011) Hemp fiber and its composites: a review. J Compos Mater 46(8):973–986

    Article  CAS  Google Scholar 

  • Sharpe G, Mallinson P (2003) Easy-care finishing of cellulosics. In: Heywood D (ed) Textile finishing. Society of Dyers and Colourists, Hampshire

    Google Scholar 

  • Surina R, Andrassy M (2013) Effect of preswelling and ultrasound treatment on the properties of flax fibers cross-linked with polycarboxylic acids. Text Res J 83(1):66–75

    Article  CAS  Google Scholar 

  • Vihodceva S, Kukle S (2011) Natural textile surface modification using sol-gel technique. Sci J Riga Tech Univ Mater Sci Text Cloth Technol 6:1–5

    Google Scholar 

  • Yang CQ (1991) Characterizing ester crosslinkages in cotton cellulose with FTIR photoacoustic spectroscopy. Text Res J 61(5):298–305

    Article  CAS  Google Scholar 

  • Yang CQ, Bakshi GD (1996) Quantitative analysis of the nonformaldehyde durable press finish on cotton fabric: acid-base titration and infrared spectroscopy. Text Res J 66(6):377–384

    Article  CAS  Google Scholar 

  • Yang CQ, Wang X (1996) Formation of cyclic anhydride intermediates and esterification of cotton cellulose by multifunctional carboxylic acids: an infrared spectroscopy study. Text Res J 66(9):595–603

    Article  CAS  Google Scholar 

  • Yu C (2015) Natural textile fibres: vegetable fibres. In: Textiles and fashion. A volume in Woodhead Publishing Series in Textiles, Chap 2, pp 29–56

  • Zhou W, Yang CQ, Lickfield GC (2004a) Mechanical strength of durable press finished cotton fabric part V: poly (vinyl alcohol) as an additive to improve fabric abrasion resistance. J Appl Polym Sci 1(91):3940–3946

    Article  CAS  Google Scholar 

  • Zhou LM, Yeung KW, Yuen CWM, Zhou X (2004b) Characterization of ramie yarn treated with sodium hydroxide and crosslinked by 1234-butanetetracarboxylic acid. J Appl Polym Sci 91:1857–1864

    Article  CAS  Google Scholar 

  • Zhou LM, Yeung KW, Yuen CWM, Zhou X (2007) Effect of mercerization on the crosslinking of ramie fabric using 1234-butanetetracarboxylic acid: physical properties and crosslink distribution. Text Res J 72(9):795–802

    Article  Google Scholar 

  • Zimniewska M, Batog J, Bogacz E, Romanowska B (2012) Functionalization of natural fibres textiles by improvement of nanoparticles fixation on their surface. J Fiber Bioeng Inform 5(3):321–339

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by PAUBAP with the Project Number 2014BSP017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzu Yavas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arık, B., Avinc, O. & Yavas, A. Crease resistance improvement of hemp biofiber fabric via sol–gel and crosslinking methods. Cellulose 25, 4841–4858 (2018). https://doi.org/10.1007/s10570-018-1885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1885-1

Keywords

Navigation