Log in

Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanopapers, 2D flat and foldable film made of network-forming cellulose nanofibers, are strong, tough and biodegradable materials of great interest as they have potential to replace the conventional fossil based polymers in various applications. Although there are several cellulose nanopaper preparation methods described in the literature, no standard method is available for the preparation of uniform and smooth nanopapers within a practical time frame. In present study, TAPPI standard method of preparation of pulp handsheets was systemically modified/optimized to prepare flat and wrinkle free cellulose nanopapers in few hours of preparation time. Physical properties of these cellulose nanopapers such as tensile strength and water vapor transmission rate were comparable to the reported values in the literature. The proposed standard preparation method will enable the comparison of the physical properties of cellulose nanopapers prepared in different studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565

    Article  CAS  Google Scholar 

  • Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson L-S, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155

    Article  CAS  Google Scholar 

  • Baez C, Considine J, Rowlands R (2014) Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21:347–356

    Article  CAS  Google Scholar 

  • Balea A, Blanco Á, Monte MC, Merayo N, Negro C (2016) Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard. BioResources 11:8123–8138

    CAS  Google Scholar 

  • Bedane AH, Eić M, Farmahini-Farahani M, **ao H (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J Membr Sci 493:46–57

    Article  CAS  Google Scholar 

  • Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35:201–207

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Rials TG (2009) Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos A Appl Sci Manuf 40:218–224

    Article  Google Scholar 

  • Chinga-Carrasco G, Averianova N, Gibadullin M, Petrov V, Leirset I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 44:331–338

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaille J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  • Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306

    Article  CAS  Google Scholar 

  • Eichhorn SJ et al (2010) current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1

    Article  CAS  Google Scholar 

  • Farmahini-Farahani M, Bedane AH, Pan Y, **ao H, Eic M, Chibante F (2015) Cellulose/nanoclay composite films with high water vapor resistance and mechanical strength. Cellulose 22:3941–3953. https://doi.org/10.1007/s10570-015-0774-0

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165. https://doi.org/10.1021/bm801065u

    Article  CAS  Google Scholar 

  • Gao K et al (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr Polym 97:243–251

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: J. Appl. Polym. Sci.: Appl. Polym. Symp. (United States), vol 37, no. CONF-8205234-Vol. 2. ITT Rayonier Inc., Shelton, WA

  • Johnson J, Ghosh A, Lannutti J (2007) Microstructure–property relationships in a tissue-engineering scaffold. J Appl Polym Sci 104:2919–2927

    Article  CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238

    Article  CAS  Google Scholar 

  • Kumar V et al (2014) Comparison of nano-and microfibrillated cellulose films. Cellulose 21:3443–3456

    Article  CAS  Google Scholar 

  • Liu F, Yi B, **ng D, Yu J, Zhang H (2003) Nafion/PTFE composite membranes for fuel cell applications. J Membr Sci 212:213–223

    Article  CAS  Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641

    Article  CAS  Google Scholar 

  • Martinez D et al (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Proceedings of the transactions of 12th fundamental research symposium, Oxford, pp 225–254

  • Nakagaito A, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80:155–159

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Nogi M et al (2013) High thermal stability of optical transparency in cellulose nanofiber paper. Appl Phys Lett 102:181911

    Article  Google Scholar 

  • Olsson RT et al (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    Article  CAS  Google Scholar 

  • Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647

    Article  Google Scholar 

  • Raj P, Varanasi S, Batchelor W, Garnier G (2015) Effect of cationic polyacrylamide on the processing and properties of nanocellulose films. J Colloid Interface Sci 447:113–119

    Article  CAS  Google Scholar 

  • Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134. https://doi.org/10.1007/s10570-010-9474-y

    Article  CAS  Google Scholar 

  • Salminen T, Hippi U, Salminen A (2014) Method for the preparation of NFC films on supports. Google Patents

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198

    Article  CAS  Google Scholar 

  • Sehaqui H, Ezekiel Mushi N, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75

    Article  CAS  Google Scholar 

  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294

    Article  CAS  Google Scholar 

  • TAPPI TM (1988) Physical testing of pulp handsheets

  • TAPPI T (2000) Forming handsheets for physical tests of pulp. Technical Association of the Pulp and Paper Industry 205

  • TAPPI Press, Atlanta, T 220 om-88

  • Tonoli G, Teixeira E, Corrêa A, Marconcini J, Caixeta L, Pereira-da-Silva M, Mattoso L (2012) Cellulose micro/nanofibres from eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: J. Appl. Polym. Sci.: Appl. Polym. Symp. (United States), vol 37, no. CONF-8205234-Vol. 2. ITT Rayonier Inc., Shelton, WA

  • Vallejos ME, Felissia FE, Area MC, Ehman NV, Tarrés Q, Mutjé P (2016) Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydr Polym 139:99–105

    Article  CAS  Google Scholar 

  • Varanasi S, Batchelor WJ (2013) Rapid preparation of cellulose nanofibre sheet. Cellulose 20:211–215

    Article  CAS  Google Scholar 

  • Varanasi S, Batchelor W (2014) Superior non-woven sheet forming characteristics of low-density cationic polymer–cellulose nanofibre colloids. Cellulose 21:3541–3550

    Article  CAS  Google Scholar 

  • Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20:1885–1896

    Article  CAS  Google Scholar 

  • Varanasi S, Low Z-X, Batchelor W (2015) Cellulose nanofibre composite membranes–biodegradable and recyclable UF membranes. Chem Eng J 265:138–146

    Article  CAS  Google Scholar 

  • Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89

    Article  Google Scholar 

  • Wang Q, Zhu J, Gleisner R, Kuster T, Baxa U, McNeil S (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643

    Article  CAS  Google Scholar 

  • Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152

    Article  CAS  Google Scholar 

  • Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wang X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574

    Article  Google Scholar 

  • Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344

    Article  CAS  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by Alabama Center for Paper and Bioresource Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parit, M., Aksoy, B. & Jiang, Z. Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers. Cellulose 25, 2915–2924 (2018). https://doi.org/10.1007/s10570-018-1759-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1759-6

Keywords

Navigation