Log in

Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Polyelectrolytes multilayer (PEM) films based on fully biobased polysaccharides, chitosan and phosphorylated cellulose (PCL) were deposited on the surface of cotton fabric by the layer-by-layer assembly method. Altering the concentration of PCL could modify the final loading on the surface of cotton fabrics. A higher PCL concentration (2 wt%) could result in more loading. Attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis directly showed that chitosan and PCL were successfully deposited onto the surface of cotton fabric. In the vertical flame test, the cotton fabric with 20 bilayers at the higher PCL concentration (2 wt%) could extinguish the flame. Microcombustion calorimetry results showed that all coated cotton fabrics reduced the peak heat release rate (HRR) and total heat release (THR) relative to the pure one, especially for (CH0.5/PCL2)20, which showed the greatest reduction in peak HRR and THR. Thermogravimetric analysis results showed that the char residue at temperatures ranging from 400 to 700 °C was enhanced compared to that in the pure cotton fabric, especially in the case of higher PCL concentration (2 wt%). The work first provided a PEM film based on fully biobased polysaccharide, chitosan and PCL on cotton fabric to enhance its flame retardancy and thermal stability via the layer-by-layer assembly method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abou-Okeil A, El-Shafie A, Hebeish A (2007) Chitosan phosphate induced better thermal characteristics to cotton fabric. J Appl Polym Sci 103:2021–2026

    Article  CAS  Google Scholar 

  • Alongi J, Ciobanu M, Malucelli G (2011) Cotton fabric treated with hybrid organic–inorganic coatings obtained through dual-cure processes. Cellulose 18:1335–1348

    Article  CAS  Google Scholar 

  • Alongi J, Carosio F, Malucelli G (2012a) Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyesterecotton blends: flammability and combustion behavior. Cellulose 19:1041–1050

    Article  CAS  Google Scholar 

  • Alongi J, Carosio F, Malucelli G (2012b) Influence of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polym Degrad Stab 97:1644–1653

    Article  CAS  Google Scholar 

  • Bulwan M, Zapotoczny S, Nowakowska M (2009) Robust ‘‘one-component’’ chitosan-based ultrathin films fabricated using layer-by-layer technique. Soft Matter 5:4726–4732

    Article  CAS  Google Scholar 

  • Carosio F, Alongi J, Malucelli G (2011a) [small alpha]-Zirconium phosphate-based nanoarchitectures on polyester fabrics through layer-by-layer assembly. J Mater Chem 21:10370–10376

    Article  CAS  Google Scholar 

  • Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011b) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96:745–750

    Article  CAS  Google Scholar 

  • Carosio F, Alongi J, Malucelli G (2012) Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester–cotton blends. Carbohydr Polym 88:1460–1469

    Article  CAS  Google Scholar 

  • Chang SC, Condon B, Graves E, Uchimiya M, Fortier C, Easson M, Wakelyn P (2011) Flame retardant properties of triazine phosphonates derivative with cotton fabric. Fibers Polym 12:334–339

    Article  CAS  Google Scholar 

  • De Geest BG, Vandenbroucke RE, Guenther AM, Sukhorukov GB, Hennink WE, Sanders NN, Demeester J, De Smedt SC (2006) Intracellularly degradable polyelectrolyte microcapsules. Adv Mater 18:1005–1009

    Article  Google Scholar 

  • Guyomard A, Muller G, Glinel K (2005) Buildup of multilayers based on amphiphilic polyelectrolytes. Macromolecules 38:5737–5742

    Article  CAS  Google Scholar 

  • Guyomard A, Nysten B, Muller G, Glinel K (2006) Loading and release of small hydrophobic molecules in multilayer films based on amphiphilic polysaccharides. Langmuir 22:2281–2287

    Article  CAS  Google Scholar 

  • Hu S, Song L, Pan HF, Hu Y, Gong XL (2012a) Thermal properties and combustion behaviors of flame retarded epoxy acrylate with a chitosan based flame retardant containing phosphorus and acrylate structure. J Anal Appl Pyrol 97:109–115

    Article  CAS  Google Scholar 

  • Hu S, Song L, Pan HF, Hu Y (2012b) Thermal properties and combustion behaviors of chitosan based flame retardant combining phosphorus and nickel. Ind Eng Chem Res 51:3663–3669

    Article  CAS  Google Scholar 

  • Hu S, Song L, Pan HF, Hu Y (2013) Effect of a novel chitosan-based flame retardant on thermal and flammability properties of polyvinyl alcohol. J Therm Anal Calorim 112:859–864

    Article  CAS  Google Scholar 

  • Kim YS, Davis R, Cain AA, Grunlan JC (2011) Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 52:2847–2855

    Article  CAS  Google Scholar 

  • Laufer G, Carosio F, Martinez R, Camino G, Grunlan JC (2011) Growth and fire resistance of colloidal silica–polyelectrolyte thin film assemblies. J Colloid Interface Sci 56:69–77

    Article  Google Scholar 

  • Laufer G, Kirkland C, Cain AA, Grunlan JC (2012a) Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4:1643–1652

    Article  CAS  Google Scholar 

  • Laufer G, Kirkland C, Morgan AB, Grunlan JC (2012b) Intumescent multilayer nano-coating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 13:2843–2848

    Article  CAS  Google Scholar 

  • Li YC, Schulz J, Grunlan JC (2009) Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability. ACS Appl Mater Interfaces 1:2338–2347

    Article  CAS  Google Scholar 

  • Li YC, Schulz J, Mannen S, Delhom C, Condon B, Chang S, Zammarano M, Grunlan JC (2010) Flame retardant behavior of polyelectrolyte clay thin film assemblies on cotton fabric. ACS Nano 4:3325–3337

    Article  CAS  Google Scholar 

  • Li YC, Mannen S, Morgan AB, Chang S, Yang YH, Condon B et al (2011a) Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv Mater 23:3926–3931

    Article  CAS  Google Scholar 

  • Li YC, Mannen S, Schulz J, Grunlan JC (2011b) Growth and fire protection behavior of POSS-based multilayer thin films. J Mater Chem 21:3060–3069

    Article  CAS  Google Scholar 

  • Mannen S, Morgan AB, Chang S, Yang YH, Condon B, Grunlan JC (2011) Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv Mater 23:3926–3931

    Article  Google Scholar 

  • Siriviriyanun A, O’ Rear EA, Yanumet N (2008) Self-extinguishing cotton fabric with minimal phosphorus deposition. Cellulose 15:731–737

    Article  CAS  Google Scholar 

  • Skovstrup S, Hansen SG, Skrydstrup T, Schiott B (2011) Conformational flexibility of chitosan: a molecular modeling study. Biomacromolecules 11:3196–3207

    Article  Google Scholar 

  • Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249

    Article  CAS  Google Scholar 

  • Suflet DM, Chitanu GC, Desbrières J (2010) Phosphorylated polysaccharides 2: synthesis and properties of phosphorylated dextran. Carbohydr Polym 82:1271–1277

    Article  CAS  Google Scholar 

  • Suflet DM, Nicolescu A, Popescu I, Chitanu GC (2011) Phosphorylated polysaccharides 3: synthesis of phosphorylated curdlan and its polyelectrolyte behaviour compared with other phosphorylated polysaccharides. Carbohydr Polym 84:1176–1181

    Article  CAS  Google Scholar 

  • Tsutsumi A, Sasajima S, Hideshima T, Nishi N, Nishimura SI, Tokura S (1986) ESR studies of Mn(II) binding to carboxymethyl and phosphorylated chitins in aqueous solutions. Polym J 18:509–511

    Article  CAS  Google Scholar 

  • Vázquez CP, Boudou T, Dulong V, Nicolas C, Picart C, Glinel K (2009) Variation of polyelectrolyte film stiffness by photo-cross-linking: a new way to control cell adhesion. Langmuir 25:3557–3563

    Google Scholar 

  • Wang X, Ma J, Wang Y, He B (2002) Guidelines for the use and interpretation of assays for monitoring autophagy. Biomaterials 23:4167–4176

    Article  CAS  Google Scholar 

  • Wang XH, Zhu Y, Feng QL, Cui FZ, Ma JB (2003) Responses of osteo-and fibroblast cells to phosphorylated chitin. J Bioact Compat Polym 18:135–146

    Article  Google Scholar 

  • **e YL, Wang MJ, Yao SJ (2009) Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir 25:8999–9005

    Article  CAS  Google Scholar 

  • Yang H, Yang CQ (2008) Flame retardant finishing of nylon/cotton blend fabric using a hydroxy-functional organophosphorus oligomer. Ind Eng Chem Res 47:2160–2165

    Article  CAS  Google Scholar 

  • Ye WJ, **n JH, Li P, Lee KD, Kwong TL (2006) Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core–shell particles. J Appl Polym Sci 102:1787–1793

    Article  CAS  Google Scholar 

  • Yokogawa Y, Paz Reyes J, Mucalo MR, Toriyama M, Kawamoto Y, Suzuki T, Nishizawa K, Kamayama T (1997) Growth of calcium phosphate on phosphorylate chitin fibres. J Mater Sci Mater Med 8:407–412

    Article  CAS  Google Scholar 

  • Yuan HX, **ng WY, Zhang P, Song L, Hu Y (2012) Functionalization of cotton with UV-cured flame retardant coatings. Ind Eng Chem Res 51:5394–5401

    Article  CAS  Google Scholar 

  • Zhang T, Yan HQ, Peng M, Wang LL, Ding HL, Fang ZP (2013a) Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 5:3013–3021

    Article  CAS  Google Scholar 

  • Zhang T, Yan HQ, Wang LL, Fang ZP (2013b) Controlled formation of self-extinguishing intumescent coating on ramie fabric via layer-by-layer assembly. Ind Eng Chem Res 52:6138–6146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Basic Research Program of China (973 Program) (2012CB719701), National Natural Science Foundation of China (no. 51036007), China Postdoctoral Science Foundation (2012M511418) and National Natural Science Foundation of China (51203146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Song, L., Ma, L. et al. Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose 21, 2995–3006 (2014). https://doi.org/10.1007/s10570-014-0276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0276-5

Keywords

Navigation