Log in

Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A simple and versatile method based on cotton cellulose coated with graphene is reported for the fabrication of superhydrophobic and electroconductive textiles. Graphene oxide was deposited on cotton fibers by a dip-pad-dry method followed by reduction with ascorbic acid to yield a fabric with a layer of graphene. The fabric was then reacted with methyltrichlorosilane to form polymethylsiloxane (PMS) nanofilaments on the fibers surface. The surface chemistry and morphology were characterized by UV–visible reflectance spectrophotometry, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy. The water contact angle (CA)/shedding angle (SHA) and resistivity measurements were used for assessing hydrophobicity and conductivity, respectively. The graphene-coated fabric showed hydrophobicity with the CA of 143.2° ± 2.9° and SHA of 41°. The formation of PMS nanofilaments displayed superhydrophobicity with CA of 163° ± 3.4° and SHA of 7°, which indicated the self-cleaning ability. Conductivity of the graphene-coated fabric was confirmed by the electrical resistivity of 91.8 kΩ/sq which increased to 112.5 kΩ/sq after the formation of PMS nanofilaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AATCC Technical Manual (2007) Test method 76-2005: Electrical surface resistivity of fabrics. American association of textile chemists and colorists, USA

  • Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145. doi:10.1021/cr900070d

    Article  Google Scholar 

  • Athauda T, Ozer R (2012) Investigation of the effect of dual-size coatings on the hydrophobicity of cotton surface. Cellulose 19(3):1031–1040. doi:10.1007/s10570-012-9659-7

    Article  CAS  Google Scholar 

  • Balu B, Breedveld V, Hess DW (2008) Fabrication of “Roll-off” and “Sticky” Superhydrophobic cellulose surfaces via plasma processing. Langmuir 24(9):4785–4790. doi:10.1021/la703766c

    Article  CAS  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. doi:10.1039/TF9444000546

    Article  CAS  Google Scholar 

  • Cervin N, Aulin C, Larsson P, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19(2):401–410. doi:10.1007/s10570-011-9629-5

    Article  CAS  Google Scholar 

  • Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561. doi:10.1002/adma.200800757

    Article  CAS  Google Scholar 

  • Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322. doi:10.1039/C1JM12523K

    Article  CAS  Google Scholar 

  • Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5(4):6423–6435. doi:10.1039/C2EE02414D

    Article  Google Scholar 

  • Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714. doi:10.1021/nl903949m

    Article  CAS  Google Scholar 

  • Hu B, Li D, Manandharm P, Fan Q, Kasilingam D, Calvert P (2012a) CNT/conducting polymer composite conductors impart high flexibility to textile electroluminescent devices. J Mater Chem 22(4):1598–1605. doi:10.1039/C1JM14121J

    Article  CAS  Google Scholar 

  • Hu P, Wang H, Zhang Q, Li Y (2012b) An indium tin oxide conductive network for flexible electronics produced using a cotton template. J Phys Chem C 116(19):10708–10713. doi:10.1021/jp3005647

    Article  CAS  Google Scholar 

  • Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902. doi:10.1002/smll.201002009

    Article  CAS  Google Scholar 

  • Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4(5):2699–2708. doi:10.1021/am3003439

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  • Li W, Tang X-Z, Zhang H-B, Jiang Z-G, Yu Z–Z, Du X-S, Mai Y-W (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 49(14):4724–4730. doi:10.1016/j.carbon.2011.06.077

    Article  CAS  Google Scholar 

  • Lin Y, Ehlert GJ, Bukowsky C, Sodano HA (2011) Superhydrophobic functionalized graphene aerogels. ACS Appl Mater Interfaces 3(7):2200–2203. doi:10.1021/am200527j

    Article  CAS  Google Scholar 

  • Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson L-S, Nam J-D, Seppala J (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21(36):13991–13998. doi:10.1039/C1JM12134K

    Article  Google Scholar 

  • Park S, Lee K-S, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–578. doi:10.1021/nn700349a

    Article  CAS  Google Scholar 

  • Peng M, Guo H, Liao Z, Qi J, Zhou Z, Fang Z, Shen L (2012) Percolation-dominated superhydrophobicity and conductivity for nanocomposite coatings from the mixtures of a commercial aqueous silica sol and functionalized carbon nanotubes. J Colloid Interface Sci 367(1):225–233. doi:10.1016/j.jcis.2011.10.029

    Article  CAS  Google Scholar 

  • Pereira C, Alves C, Monteiro A, Magén C, Pereira AM, Ibarra A, Ibarra MR, Tavares PB, Araújo JP, Blanco G, Pintado JM, Carvalho AP, Pires J, Pereira MFR, Freire C (2011) Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Appl Mater Interfaces 3(7):2289–2299. doi:10.1021/am200220x

    Article  CAS  Google Scholar 

  • Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116(24):13403–13412. doi:10.1021/jp302131w

    Article  CAS  Google Scholar 

  • Schindler WD, Hauser PJ (2004) Chemical finishing of textiles. Woodhead Publishing, Oxford

    Book  Google Scholar 

  • Shateri Khalil-Abad M, Yazdanshenas ME (2010) Superhydrophobic antibacterial cotton textiles. J Colloid Interface Sci 351(1):293–298. doi:10.1016/j.jcis.2010.07.049

    Article  CAS  Google Scholar 

  • Shirgholami MA, Shateri Khalil-Abad M, Khajavi R, Yazdanshenas ME (2011) Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution–immersion process. J Colloid Interface Sci 359(2):530–535. doi:10.1016/j.jcis.2011.04.031

    Article  CAS  Google Scholar 

  • Shirgholami MA, Shateri-Khalilabad M, Yazdanshenas ME (2013) Effect of reaction duration in the formation of superhydrophobic polymethylsilsesquioxane nanostructures on cotton fabric. Text Res J 83(1):100–110. doi:10.1177/0040517512444335

    Article  Google Scholar 

  • Simončič B, Tomšič B, Černe L, Orel B, Jerman I, Kovač J, Žerjav M, Simončič A (2012) Multifunctional water and oil repellent and antimicrobial properties of finished cotton: influence of sol–gel finishing procedure. J Sol Gel Sci Technol 61(2):340–354. doi:10.1007/s10971-011-2633-2

    Article  Google Scholar 

  • Tang H, Ehlert GJ, Lin Y, Sodano HA (2011) Highly efficient synthesis of graphene nanocomposites. Nano Lett 12(1):84–90. doi:10.1021/nl203023k

    Article  Google Scholar 

  • Tang Z, Kang H, Shen Z, Guo B, Zhang L, Jia D (2012) Grafting of polyester onto graphene for electrically and thermally conductive composites. Macromolecules 45(8):3444–3451. doi:10.1021/ma300450t

    Article  CAS  Google Scholar 

  • Wang S, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25(18):11078–11081. doi:10.1021/la901402f

    Article  CAS  Google Scholar 

  • Wang H, Xue Y, Lin T (2011) One-step vapour-phase formation of patternable, electrically conductive, superamphiphobic coatings on fibrous materials. Soft Matter 7(18):8158–8161. doi:10.1039/TF9444000546

    Article  CAS  Google Scholar 

  • Wang J-N, Shao R-Q, Zhang Y-L, Guo L, Jiang H-B, Lu D-X, Sun H-B (2012) Biomimetic graphene surfaces with superhydrophobicity and iridescence. Chem Asian J 7(2):301–304. doi:10.1002/asia.201100882

    Article  CAS  Google Scholar 

  • Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and gras** the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface 169(2):80–105. doi:10.1016/j.cis.2011.08.005

    Article  CAS  Google Scholar 

  • Yu G, Hu L, Vosgueritchian M, Wang H, **e X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11(7):2905–2911. doi:10.1021/nl2013828

    Article  CAS  Google Scholar 

  • Zimmermann J, Seeger S, Reifler FA (2009) Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces. Text Res J 79(17):1565–1570. doi:10.1177/0040517509105074

    Google Scholar 

  • Zou D, Lv Z, Cai X, Hou S (2012) Macro/microfiber-shaped electronic devices. Nano Energy 1(2):273–281. doi:10.1016/j.nanoen.2012.01.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shateri-Khalilabad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shateri-Khalilabad, M., Yazdanshenas, M.E. Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose 20, 963–972 (2013). https://doi.org/10.1007/s10570-013-9873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9873-y

Keywords

Navigation