Log in

Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Transparent and water repellent gas barrier cellulose films were fabricated by surface modification of alkali/urea regenerated cellulose (AUC) films by soaking in cationic alkylketene dimer (AKD) dispersion, drying, and heating. Highly water repellent and excellent gas barrier properties were obtained for AKD-treated and heated AUC films due to covering of the film surfaces by hydrophobic AKD components. The maximum AKD content of the films was 0.2 %. Oxygen transmission rates for AKD-treated AUC films at 0 % relative humidity (RH) were less than 0.0005 mL m−2 day−1 kPa−1, the lowest detection limit of the instrument. Water contact angles on the AUC film increased from 50 to 110° after AKD treatment, and water uptake (immersion in water for 6 days) decreased from 92 to 20 %. Moreover, oxygen permeability decreased from 0.56 and 5.8 to 0.13 and 2.1 mL μm m−2 day−1 kPa−1 at 50 and 75 % RH, respectively, when the AKD content of the film was increased from 0 to 0.2 %. The present AKD-treated AUC film also had high light transparency (88 % at 600 nm), tensile strength (168 MPa), elongation at break (29 %), and work of fracture (37 MJ m−3). FT–IR analysis showed that AKD components were still present as major species on the AKD-treated film surfaces without hydrolysis at 2 months after conditioning the films at 23 °C and 50 % RH, indicating that such AKD molecules contributed to the hydrophobic nature of the AKD-treated AUC films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asakura K, Iwamoto M, Isogai A (2006) The effects of AKD oligomers present in AKD wax on dispersion stability and paper sizing performance. Nord Pulp Paper Res J 2006:245–252

    Article  Google Scholar 

  • Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790

    Article  CAS  Google Scholar 

  • Bras J, Vaca-Garcia C, Borredon ME, Glasser W (2007) Oxygen and water vapor permeability of fully substituted long chain cellulose esters (LCCE). Cellulose 14:367–374

    Article  CAS  Google Scholar 

  • Edlund U, Zhu Ryberg YZ, Albertsson AC (2010) Barrier films from renewable forestry waste. Biomacromolecules 11:2532–2538

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Isogai A (2012) Nano-dispersion of TEMPO-oxidized cellulose/aliphatic amine salts in isopropyl alcohol. Cellulose 19:459–466

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwamoto S, Kumamoto Y, Ohdaira T, Suzuki R, Isogai A (2011) Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Biomacromolecules 12:4057–4062

    Article  CAS  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  CAS  Google Scholar 

  • Hartman J, Albertsson AC, Sjöberg J (2006) Surface-and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules 7:1983–1989

    Article  CAS  Google Scholar 

  • Isogai A (1999) Mechanism of paper sizing by alkylketene dimer. J Pulp Paper Sci 25:251–255

    CAS  Google Scholar 

  • Isogai A, Onabe F, Usuda M (1992a) Changes in zeta potentials of amorphous cellulose particles with aluminum sulfate. Sen’i Gakkaishi 48:649–654

    Article  CAS  Google Scholar 

  • Isogai A, Taniguchi R, Onabe F, Usuda M (1992b) Sizing mechanism of alkylketene dimers, part 2. Deterioration of alkylketene dimer emulsion. Nord Pulp Paper Res J 6:205–211

    Article  Google Scholar 

  • Isogai A, Kitaoka C, Onabe F (1997) Effects of carboxyl groups in pulp on retention of alkylketene dimer. J Pulp Paper Sci 23:J215–J219

    CAS  Google Scholar 

  • Kannangara D, Shen W (2008) Roughness effects of cellulose and paper substrates on water drop impact and recoil. Colloids Surf A 330:151–160

    Article  CAS  Google Scholar 

  • Klemm D, Heubletin B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641

    Article  CAS  Google Scholar 

  • Miller KS, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Technol 8:228–237

    Article  CAS  Google Scholar 

  • Obokata T, Isogai A (2007) The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine–epichlorohydrin (PAE) resin. Colloids Surf A 302:525–531

    Article  CAS  Google Scholar 

  • Revell KM (1991) High barrier metallized film. US Patent 5021298

  • Roberts JC (1996) Paper Chemistry, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Yang Q, Lue A, Qi H, Sun Y, Zhang X, Zhang L (2009) Properties and bioapplications of blended cellulose and corn protein films. Macromol Biosci 9:849–856

    Article  CAS  Google Scholar 

  • Yang Q, Lue A, Zhang L (2010) Reinforcement of ramie fibers on regenerated cellulose films. Compos Sci Technol 70:2319–2324

    Article  CAS  Google Scholar 

  • Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011a) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766–2771

    Article  CAS  Google Scholar 

  • Yang Q, Qin X, Zhang L (2011b) Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose 18:681–688

    Article  CAS  Google Scholar 

  • Yang Q, Fujisawa S, Saito T, Isogai A (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703

    Article  CAS  Google Scholar 

  • Yoshida Y, Yanagisawa M, Isogai A, Suguri N, Sumikawa N (2005) Preparation of polymer brush-type cellulose β-ketoesters using LiCl/1,3-dimethyl-2-imidazolidinone as a solvent. Polymer 46:2548–2557

    Article  CAS  Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  • Zhang L, Zhou Q (1997) Water-resistant film from polyurethane/nitrocellulose coating to regenerated cellulose. Ind Eng Chem Res 36:2651–2656

    Article  CAS  Google Scholar 

  • Zhu Ryberg YZ, Edlund U, Albertsson AC (2011) Conceptual approach to renewable barrier film design based on wood hydrolysate. Biomacromolecules 12:1355–1362

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Japan Society for the Promotion of Science (JSPS): Grant-in-Aid for Scientific Research S (21228007), and Research Fellowships for Young Scientists (24-7663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Saito, T. & Isogai, A. Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties. Cellulose 19, 1913–1921 (2012). https://doi.org/10.1007/s10570-012-9790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9790-5

Keywords

Navigation