Log in

Material design of retardation films with extraordinary wavelength dispersion of orientation birefringence: a review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Orientation birefringence and its wavelength dispersion for various types of cellulose esters are reviewed. Cellulose esters such as cellulose acetate propionate and cellulose acetate butyrate show positive orientation birefringence with extraordinary wavelength dispersion, which is determined mainly by the ester groups rather than the main chains. The acetyl group provides negative orientation birefringence with strong ordinary wavelength dispersion, whereas the propionyl and butyryl groups give positive orientation birefringence with weak wavelength dispersion. Although all groups show ordinary wavelength dispersion, the summation of their orientation birefringences gives extraordinary dispersion. Moreover, the wavelength dispersion is dependent on the stretching ratio due to the difference in the orientation relaxation of each group. On the contrary, cellulose triacetate (CTA) shows negative birefringence with ordinary wavelength dispersion because it has no positive contribution. However, do** a plasticizer having positive orientation birefringence changes the orientation birefringence of CTA from negative to positive, and the wavelength dispersion from ordinary to extraordinary. This is attributed to the cooperative orientation of plasticizer molecules to the stretching direction with CTA chains, known as nematic interaction upon a hot drawing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Doi M, Watanabe H (1991) Effect of nematic interaction on the Rouse dynamics. Macromolecules 24(3):740–744

    Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26(9):1605–1688

    Article  CAS  Google Scholar 

  • El-Diasty F, Soliman MA, Elgendy AFT, Ashour A (2007) Birefringence dispersion in uniaxial material irradiated by gamma rays: cellulose triacetate films. J Opt A Pure Appl Opt 9(3):247–252

    Article  CAS  Google Scholar 

  • Glasser WG (2004) Prospects for future applications of cellulose acetate. Macromol Symp 208(1):371–394

    Article  CAS  Google Scholar 

  • Hahn BR, Wendorff JH (1985) Compensation method for zero birefringence in oriented polymers. Polymer 26(11):1619–1622

    Article  CAS  Google Scholar 

  • Harding GF (1986) Optical properties of polymers. In: Meeten GH (ed) Applied and science. London, Chap. 2

  • Hermans PH, Platzek P (1939) Beitrage zür kenntnis des deformationsmechanimus und der feinstruktur der hydratzellulose X. die Kratky’sche kette als rechenmodell für deformationsmechanismus der hydratzellulosegele. Kolloid-Z 88(1):68–72

    Google Scholar 

  • Iwata S, Tsukahara H, Nihei E, Koike Y (1996) Compensation for birefringence of oriented polymers by random copolymerization method. Jpn J Appl Phys 35(7):3896–3901

    Article  CAS  Google Scholar 

  • Iwata S, Tsukahara H, Nihei E, Koike Y (1997) Transparent zero-birefringence copolymer and its optical properties. Appl Opt 36(19):4549–4555

    Article  CAS  Google Scholar 

  • Jenkins FA, White HE (1981) Fundamentals of optics, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Kamide K (2005) Cellulose and cellulose derivatives. Elsevier Science, Amsterdam

    Google Scholar 

  • Koike Y, Yamazaki K, Ohkita H, Tagaya A (2006) Zero-birefringence optical polymer by birefringent crystal and analysis of the compensation mechanism. Macomol Symp 235(1):64–70

    Article  CAS  Google Scholar 

  • Kuboyama K, Kuroda T, Ougizawa T (2007) Control of wavelength dispersion of birefringence by miscible polymer blends. Macromol Symp 249–250(1):641–646

    Article  Google Scholar 

  • Kuhn W, Grün F (1942) Beziehungen zwishen elastischen konstanten und dehnungsdoppelbrechung hochelastischer stoffe. Kolloid-Z 101(3):248–271

    Article  CAS  Google Scholar 

  • Marks JE, Erman B (1988) Rubberlike elasticity A molecular primer. Wiley, New York

    Google Scholar 

  • Merrill WW, Tirrell M, Tassin JF, Monnerie L (1989) Diffusion and relaxation in oriented polymer media. Macromolecules 22(2):896–908

    Article  CAS  Google Scholar 

  • Mohd Edeerozey AM, Tsuji M, Shiroyama Y, Yamaguchi M (2011a) Wavelength dispersion of orientation birefringence for cellulose esters containing tricresyl phosphate. Macromolecules 44(10):3942–3949

    Article  Google Scholar 

  • Mohd Edeerozey AM, Tsuji M, Nobukawa S, Yamaguchi M (2011b) Effect of moisture on the orientation birefringence of cellulose esters. Polymers 3(2):955–966

    Article  Google Scholar 

  • Nakayama H, Fukagawa N, Nishiura Y, Yasuda T, Ito T, Mihayashi K (2006) Development of low-retardation TAC film for protection films of LCD’s polarizer. J Photopolymer Sci Technol 19(2):169–173

    Article  CAS  Google Scholar 

  • Nobukawa S, Urakawa O, Shikata T, Inoue T (2010) Evaluation of nematic interaction parameter between polymer segments and low-mass molecules in the mixture. Macromolecules 43(14):6099–6105

    Article  CAS  Google Scholar 

  • Nobukawa S, Urakawa O, Shikata T, Inoue T (2011) Cooperative dynamics in polystyrene and low-mass molecule mixtures. Macromolecules 44(20):8324–8332

    Article  CAS  Google Scholar 

  • Ohkita H, Tagaya A, Koike Y (2004) Preparation of a zero-birefringence polymer doped with a birefringent crystal and analysis of its characteristics. Macromolecules 37(22):8342–8348

    Article  CAS  Google Scholar 

  • Ohno T, Nishio Y (2006) Cellulose alkyl ester/vinyl polymer blends: effects of butyryl substitution and intramolecular copolymer composition on the miscibility. Cellulose 13(3):245–259

    Article  CAS  Google Scholar 

  • Ohno T, Nishio Y (2007) Molecular orientation and optical anisotropy in drawn films of miscible blends composed of cellulose acetate and poly(N-vinylpyrrolidone-co-methyl methacrylate). Macromolecules 40(9):3468–3476

    Article  CAS  Google Scholar 

  • Read BE (1975) Structure and properties of oriented polymers. In: Ward IM (ed) Applied Science Publishers, London, Chap. 4

  • Saito H, Inoue T (1987) Chain orientation and intrinsic anisotropy in birefringence-free polymer blends. J Polym Sci Polym Phys Ed 25(8):1629–1636

    Article  CAS  Google Scholar 

  • Sata H, Murayama M, Shimamoto S (2004) Properties and applications of cellulose triacetate film. Macromol Symp 208(1):323–333

    Article  CAS  Google Scholar 

  • Scharf T (2007) Polarized light in liquid crystals and polymers. Wiley, New York

    Google Scholar 

  • Stein RS, Onogi S, Sasaguri K, Keedy DA (1963) Dynamic birefringence of high polymers II. J Appl Phys 34(1):80–89

    Article  CAS  Google Scholar 

  • Tagaya A, Iwata S, Kawanami E, Tsukahara H, Koike Y (2001a) Zero-birefringence polymer by the anisotropic molecule dope method. Appl Opt 40(22):3677–3683

    Article  CAS  Google Scholar 

  • Tagaya A, Iwata S, Kawanami E, Tsukahara H, Koike Y (2001b) Anisotropic molecule dopant method for synthesizing a zero-birefringence polymer. Jpn J Appl Phys 40(10):6117–6123

    Article  CAS  Google Scholar 

  • Tagaya A, Ohkita H, Mukoh M, Sakaguchi R, Koike Y (2003) Compensation of the birefringence of a polymer by a birefringent crystal. Science 301:812–814

    Article  CAS  Google Scholar 

  • Tagaya A, Ohkita H, Harada T, Ishibashi K, Koike Y (2006) Zero-birefringence optical polymers. Macromolecules 39(8):3019–3023

    Article  CAS  Google Scholar 

  • Tatsushima T, Ogata N, Nakane K, Ogihara T (2005) Structure and physical properties of cellulose acetate butyrate/poly(butylene succinate) blend. J Appl Polym Sci 96(2):400–406

    Article  CAS  Google Scholar 

  • Treloar LRG (1958) The physics of rubber elasticity. Clarendon Press, Oxford

    Google Scholar 

  • Uchiyama A, Yatabe T (2003a) Analysis of extraordinary birefringence dispersion of uniaxially oriented poly(2,6-dimethyl 1,4-phenylene oxide)/atactic polystyrene blend films. Jpn J Appl Phys 42(6):3503–3507

    Article  CAS  Google Scholar 

  • Uchiyama A, Yatabe T (2003b) Control of birefringence dispersion of uniaxially oriented poly(2,6-dimethyl 1,4-phenylene oxide)/atactic polystyrene blend films by changing the stretching parameters. Jpn J Appl Phys 42(11):5665–5669

    Article  CAS  Google Scholar 

  • Uchiyama A, Yatabe T (2003c) Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefringent units. Jpn J Appl Phys 42(11):6941–6945

    Article  CAS  Google Scholar 

  • Unohara T, Teramoto Y, Nishio Y (2011) Molecular orientation and optical anisotropy in drawn films of cellulose diacetate-graft-PLLA: comparative investigation with poly(vinyl acetate-co-vinyl alcohol)-graft-PLLA. Cellulose 18(3):539–553

    Article  CAS  Google Scholar 

  • Urakawa O, Ohta E, Hori H, Adachi K (2006) Effect of molecular size on cooperative dynamics of low mass compounds in polystyrene. J Polym Sci Polym Phys Ed 44(6):967–974

    Article  CAS  Google Scholar 

  • Urakawa O, Nobukawa S, Shikata T, Inoue T (2010) Dynamics of low mass molecules dissolved in polymers. Nihon Reoroji Gakkaishi 38(1):41–46

    Article  CAS  Google Scholar 

  • Yamaguchi M (2010) Optical properties of cellulose esters and their blends. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives, and industrial uses. Nova Science Publishers, New York, Chap. 17

  • Yamaguchi M, Masuzawa K (2007) Birefringence control for binary blends of cellulose acetate propionate and poly(vinyl acetate). Eur Polym J 43(8):3277–3282

    Article  CAS  Google Scholar 

  • Yamaguchi M, Masuzawa K (2008) Transparent polymer blends composed of cellulose acetate propionate and poly(epichlorohydrin). Cellulose 15(1):17–22

    Article  CAS  Google Scholar 

  • Yamaguchi M, Okada K, Mohd Edeerozey AM, Shiroyama Y, Iwasaki T, Okamoto K (2009a) Extraordinary wavelength dispersion of orientation birefringence for cellulose esters. Macromolecules 42(22):9034–9040

    Article  CAS  Google Scholar 

  • Yamaguchi M, Iwasaki T, Okada K, Okamoto K (2009b) Control of optical anisotropy of cellulose esters and their blends with plasticizer. Acta Mater 57(3):823–829

    Article  CAS  Google Scholar 

  • Yamaguchi M, Lee S, Mohd Edeerozey AM, Tsuji M, Yokohara T (2010) Modification of orientation birefringence of cellulose ester by addition of poly(lactic acid). Eur Polym J 46(12):2269–2274

    Article  CAS  Google Scholar 

  • Zawada JA, Fuller GG, Colby RH, Fetters LJ, Roovers J (1994) Component dynamics in miscible blends of 1,4-polyisoprene and 1,2-polybutadiene. Macromolecules 27(23):6861–6870

    Article  CAS  Google Scholar 

  • Zhou W, Diehl C, Murray D, Koppi KA, Hahn S, Wu ST (2010) Birefringent properties of cyclic block copolymers and low-retardation-film development. J SID 18(1):66–74

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Taihei Chemicals Limited for their valuable advice and the kind supply of the samples employed in this study. Furthermore, the authors gratefully acknowledge financial supports from Japan Science and Technology Agency (Regional Research and Development Resources Utilization Program). The authors also would like to express their gratitude to Mr. Kenji Masuzawa, Mr. Takuya Iwasaki, Ms. Kyoko Okada, Mr. Yasuhiko Shiroyama, Ms. Manami Tsuji, and Ms. SoYoung Lee for their efforts to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, M., Manaf, M.E.A., Songsurang, K. et al. Material design of retardation films with extraordinary wavelength dispersion of orientation birefringence: a review. Cellulose 19, 601–613 (2012). https://doi.org/10.1007/s10570-012-9660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9660-1

Keywords

Navigation