Log in

Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Adsorption isotherms of single and double chain cationic surfactants with different chain length (cetyltrimethyl-, didodecyl- and dihexadecyl ammonium bromide) onto cellulose nanofibrils were determined. Nanofibrillated cellulose, also known as microfibrillated cellulose (MFC), with varying contents of carboxyl groups (different surface charge) was prepared by TEMPO-mediated oxidation followed by mechanical fibrillation. The fibril charge was characterized by potentiometric and conductometric titration. Surfactant adsorption was verified by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). Wetting and adhesion of water onto fibril films was determined by contact angle measurements. Small aggregates (admicelles) of surfactant were shown to form on the nanofibril surfaces, well below critical micelle concentrations. The results demonstrate the possibility of using cationic surfactants to systematically control the degree of water wettability of cellulose nanofibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alila S, Boufi S, Belgacem MN, Beneventi D (2005) Adsorption of cationic surfactant onto cellulosic fibers I. Surface charge effects. Langmuir 21:8106–8113

    Article  CAS  Google Scholar 

  • Aloulou F, Boufi S, Beneventi D (2004a) Adsorption of organic compounds onto polyelectrolyte immobilized-surfactant aggregates on cellulosic fibers. J Colloid Interf Sci 280:350–358

    Article  CAS  Google Scholar 

  • Aloulou F, Boufi S, Chakchouk M (2004b) Adsorption of octadecyltrimethylammonium chloride and solubilization on to cellulosic fibers. Colloid Polym Sci 282:699–707

    Article  CAS  Google Scholar 

  • Aloulou F, Boufi S, Belgacem N, Gandini A (2004c) Adsorption of cationic surfactants and subsequent adsolubilization of organic compounds onto cellulose fibers. Colloid Polym Sci 283:344–350

    Article  CAS  Google Scholar 

  • Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28:837–844

    Article  CAS  Google Scholar 

  • Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:655–677

    Article  Google Scholar 

  • Barthel KU (2004) Interactive 3D surface plot. http://rsb.info.nih.gov/ij/plugins/surface-plot-3d.html

  • Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A Appl Sci Manuf 36:1486–1493

    Article  Google Scholar 

  • Chinga G, Johnsen PO, Dougherty R, Lunden-Berli E, Walter J (2007) Quantification of the 3D microstructures of SC surfaces. J Microsc 227:254–265

    Article  Google Scholar 

  • Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanopart Res 12:841–851

    Article  CAS  Google Scholar 

  • da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425

    Article  CAS  Google Scholar 

  • Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp Paper Res J 23:299–304

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations. II. Analyst 77:661–671

    Article  CAS  Google Scholar 

  • Helbert W, Cavaillé JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund AL, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Proc 81:1109–1112

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mate Sci Proc 89:461–466

    Article  CAS  Google Scholar 

  • Kim D-Y, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367

    Article  CAS  Google Scholar 

  • Ladouce L, Fleury E, Goussé C, Cantiani R, Chanzy H, Excoffier G (2004) Cellulose nanofibrils with modified surface, preparation method and use thereof—Rhodia Chimie, US 6 703 497

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Proc 78:547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Proc 80:155–159

    Article  CAS  Google Scholar 

  • Ougiya H, Watanabe K, Morinaga Y, Yoshinaga F (1997) Emulsion-stabilizing effect of bacterial cellulose. Biosci Biotechnol Biochem 61:1541–1545

    Article  CAS  Google Scholar 

  • Oza KP, Frank SG (1986) Microcrystalline cellulose stabilized emulsions. J Dispers Sci Technol 7:543–561

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson TP, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Partyka S, Kundheimer M, Faucumore B (1993) Aggregate formation at the solid-liquid interface: the calorimetric evidence. Colloids Surf A Physicochem Eng Aspects 76:267–281

    Article  CAS  Google Scholar 

  • Peltonen J, Järn M, Areva S, Linden M, Rosenholm JB (2004) Topographical parameters for specifying a three-dimensional surface. Langmuir 20:9428–9431

    Article  CAS  Google Scholar 

  • Penfold J, Tucker I, Petkov J, Thomas RK (2007) Surfactant adsorption onto cellulose surfaces. Langmuir 23:8357–8364

    Article  CAS  Google Scholar 

  • Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2010) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose. doi:10.1007/s10570-010-9474-y

  • Rosen MJ, Goldsmith HA (1972) Systematic analysis of surface-active agents. Willey-Interscience, New York, p. 457

  • Rossotti FJC, Rossotti H (1965) Potentiometric titrations using Gran plots-a textbook omission. J Chem Edu 42:375–378

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Scamehorn JF, Schechter RS, Wade WH (1982) Adsorption of surfactants on mineral oxide surfaces from aqueous solutions. I. Isomerically pure anionic surfactants. J Colloid Interf Sci 85:463–478

    Article  CAS  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  • Sui ZM, Chen X, Wang LY, Xu LM, Zhuang WC, Chai YC, Yang CJ (2006) Cap** effect of CTAB on positively charged Ag nanoparticles. Phys E Low Dimens syst nanostruct 33:308–314

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Xhanari K, Syverud K, Stenius P (2010) Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration and o/w ratio. J Dispers Sci Technol

Download references

Acknowledgments

This project was supported by the Research Council of Norway, Södra Cell, Akzo Nobel and Jotun. Dr. Leena-Sisko Johansson, Aalto University, Department of Forest Products and Technology, is thanked for the XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Syverud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xhanari, K., Syverud, K., Chinga-Carrasco, G. et al. Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18, 257–270 (2011). https://doi.org/10.1007/s10570-010-9482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9482-y

Keywords

Navigation