Log in

On the degradation evolution equations of cellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose degradation is usually characterized in terms of either the chain scission number or the scission fraction of cellulose unit as a function of degree of polymerisation (DP) and cellulose degradation evolution equation is most commonly described by the well known Ekenstam equations. In this paper we show that cellulose degradation can be best characterized either in terms of the percentage DP loss or in terms of the percentage tensile strength (TS) loss. We present a new cellulose degradation evolution equation expressed in terms of the percentage DP loss and apply it for having a quantitative comparison with six sets of experimental data. We develop a new kinetic equation for the percentage TS loss of cellulose and test it with four sets of experimental data. It turns out that the proposed cellulose degradation evolution equations are able to explain the real experimental data of different cellulose materials carried out under a variety of experimental conditions, particularly the prolonged autocatalytic degradation in sealed vessels. We also develop a new method for predicting the degree of degradation of cellulose at ambient conditions by combining the master equation representing the kinetics of either percentage DP loss or percentage TS loss at the lowest experimental temperature with Arrhenius shift factor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Arney JS, Noval CL (1982) Accelerated aging of paper. The influence of acidity on the relative contribution of oxygen-independent and oxygen-dependent processes. Tappi J 65:113–115

    CAS  Google Scholar 

  • Barański A, Łagan JM, Łojewski T (2006) The concept of mixed-control mechanisms and its applicability to paper degradation studies. e-PS 3:1–4

    Google Scholar 

  • Bouchard J, Méthot M, Jordan B (2006) The effects of ionizing radiation on the cellulose of woodfree paper. Cellulose 13:601–610

    Article  CAS  Google Scholar 

  • Calvini P (2005) The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose 12:445–447

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A (2006) On the rate of paper degradation: lessons from the past. Restaurator 27(4):275–290

    Article  CAS  Google Scholar 

  • Chen SL, Lucia LA (2003) Improved method for evaluation of cellulose degradation. J Wood Sci 49:285–288

    Article  CAS  Google Scholar 

  • Daruwalla EH, Narsian MG (1966) Detection and identification of acid-sensitive linkages in cellulose fiber substances. Tappi J 49(3):106–111

    CAS  Google Scholar 

  • Ding H-Z, Wang ZD (2007) Time–temperature superposition method for predicting the permanence of paper by extrapolating accelerated ageing data to ambient conditions. Cellulose 14:171–181

    Article  CAS  Google Scholar 

  • Ekenstam A (1936) The behaviour of cellulose in mineral acid solutions: kinetic study of the decomposition of cellulose in acid solutions. BER 69:540–553

    Google Scholar 

  • Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low temperature degradation of cellulose. Cellulose 1:26–56

    Article  CAS  Google Scholar 

  • Emsley AM, Heywood RJ, Ali M, Eley CM (1997) On the kinetics of degradation of cellulose. Cellulose 4:1–5

    Article  CAS  Google Scholar 

  • Emsley AM, **ao X, Heywood RJ, Ali M (2000a) Degradation of cellulosic insulation in power transformers. Part 3: effects of oxygen and water on ageing in oil. IEE Proc Sci Meas Technol 147(3):115–119

    Article  CAS  Google Scholar 

  • Emsley AM, Heywood RJ, Ali M, **ao X (2000b) Degradation of cellulosic insulation in power transformers. Part 4: effects of ageing on the tensile strength of paper. IEE Proc Sci Meas Technol 147(6):285–290

    Article  CAS  Google Scholar 

  • Feller RL, Lee SB, Bogaard J (1986) The kinetics of cellulose deterioration. In: Needles HL, Zeronian SH (eds) Historic textile and paper materials: conservation and characterization. Advances in chemistry series 212. American Chemical Society, Philadelphia, USA, pp 329–346

  • Fung DPC (1969) Kinetics and mechanism of the thermal degradation of cellulose. Tappi J 52:319–321

    CAS  Google Scholar 

  • Gasser HP, Huser J, Krause C, Dahinden V, Emsley AM (1999) Determining the ageing parameters of cellulosic insulation in a transformer. In: Eleventh international symposium on high voltage engineering (IEE Conf. Publ. No. 467), London, 23–27 August 1999, pp 4.143–4.147

  • Gillen KT, Bernstein R, Derzon DK (2005a) Evidence of non-Arrhenius behaviour from laboratory aging and 24-years field aging of polychloroprene rubber materials. Poly Deg Stab 87:57–67

    Article  CAS  Google Scholar 

  • Gillen KT, Bernstein R, Celina M (2005b) Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials. Poly Deg Stab 87:335–346

    Article  CAS  Google Scholar 

  • Hansen AC, Baker-Jarvis J (1990) A rate-dependent kinetic theory of fracture for polymers. Inter J Fracture 44:221–231

    CAS  Google Scholar 

  • Heywood RJ, Stevens GC, Ferguson C, Emsley AM (1999) Life assessment of cable paper using slow thermal ramp method. Thermochim Acta 332:189–195

    Article  CAS  Google Scholar 

  • Hill DJT, Le TT, Darveniza M, Saha T (1995) A study of degradation of cellulosic insulation materials in a power transformer. Part 2: tensile strength of cellulose insulation paper. Polym Deg Stab 49:429–435

    Article  CAS  Google Scholar 

  • Hon DNS (1985) Mechanochemistry of cellulosic materials. In: Kennedy JF, Phillips GO, Wedlock DJ, Williams PA (eds) Cellulose and its derivatives: chemistry, biochemistry and applications, chapter 6. Ellis Horwood Limited, Chichester, UK, pp 71–86

  • Johansson EE, Lind J, Ljunggren S (2000) Aspects of the chemistry of cellulose degradation and the effect of ethylene glycol during ozone delignification of Kraft pulps. J Pulp Pap Sci 26:239–244

    CAS  Google Scholar 

  • Krassig H, Kitchen W (1961) Factors influencing tensile properties of cellulose fibers. J Polym Sci 51:123–172

    CAS  Google Scholar 

  • Kukensko VS, Tamuzs VP (1981) Fracture micromechanics of polymer materials. Martinus Nijhoff Publishers, Boston, MA

    Google Scholar 

  • Margutti S, Conio G, Calvini P, Pedemonte E (2001) Hydrolytic and oxidative degradation of paper. Restaurator 22:67–83

    Article  CAS  Google Scholar 

  • McCrady E (1996) Effect of metals on paper: a literature review. Alkaline Paper Advocate, vol 9(1), May

  • McShane CP, Corkran JL, Rapp KJ, Luksich J (2003) Aging of paper insulation retrofilled with natural ester dielectric fluid. IEEE 2003 annual report conf. on electrical insulation and dielectric phenomena. Albuquerque, USA, pp 124–127

  • Moser HP, Dahinden V (1987) Transformerboard II. H. Weidmann AG, CH-8640 Rapperswil

  • Petrov VA (1984) Lifetime-under-load of solid subjected to stresses below the breaking value. Sov Phys Solid State 26:1283–1284

    Google Scholar 

  • Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23:1431–1442

    Article  CAS  Google Scholar 

  • Sharples A (1954) The hydrolysis of cellulose. Part 1. The fine structure of Egyptian cotton. J Polym Sci 13:393–401

    Article  CAS  Google Scholar 

  • Sharples A (1971) Degradation of cellulose and its derivatives. A. Acid hydrolysis and alcoholysis. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives, vol V, Pt V. Wiley-Interscience, New York, pp 991–1006

  • Soares S, Ricardo N, Heatley F, Rodrigues E (2001) Low temperature thermal degradation of cellulosic insulating paper in air and transformer oil. Polym Int 50:303–308

    Article  CAS  Google Scholar 

  • Strlič M, Kolar J, Pihlar B, Rychlý J, Matisová-Rychlá L (2001) Initial degradation process of cellulose at elevated temperatures revisited-chemiluminescence evidence. Polym Deg Stab 72:157–162

    Article  Google Scholar 

  • Testa G, Sardella A, Rossi E, Bozzi C, Seves A (1994) The kinetics of cellulose fiber degradation and correlation with some tensile properties. Acta Polymer 45:47–49

    Article  CAS  Google Scholar 

  • Williams JC, Fowler CS, Lyon MS, Merrill TL (1977) Metallic catalysts in the oxidative degradation of paper. Advances in chemistry series, ACS 164, pp 37–61

  • Zervos S, Moropoulou A (2005) Cotton cellulose ageing in sealed vessels. Kinetic model of autocatalytic depolymerization. Cellulose 12:485–496

    Article  CAS  Google Scholar 

  • Zhurkov SN, Korsukov VE (1974) Atomic mechanism of fracture of solid polymers. J Polym Sci: Polym Phys 12:385–398

    Article  CAS  Google Scholar 

  • Zou X, Gurnagul N, Uesaka T, Bouchard J (1994) Accelerated ageing of papers of pure cellulose: mechanism of cellulose degradation and paper embrittlement. Polym Deg Stab 43:393–402

    Article  CAS  Google Scholar 

  • Zou X, Uesaka T, Gurnagul N (1996) Prediction of paper permanence by accelerated ageing: Part 1 kinetic analysis of the aging process. Cellulose 3:243–267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all anonymous reviewers for some very valuable suggestions. We would also like to thank Professor Wolfgang Glasser (Editor in Chief) for encouragement. The research was partly supported by the EPSRC-SUPERGEN V-AMPerES (Asset Management and Performance of Energy Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. -Z. Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H.Z., Wang, Z.D. On the degradation evolution equations of cellulose. Cellulose 15, 205–224 (2008). https://doi.org/10.1007/s10570-007-9166-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9166-4

Keywords

Navigation