Log in

Machine learning applied to asteroid dynamics

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Machine learning (ML) is the branch of computer science that studies computer algorithms that can learn from data. It is mainly divided into supervised learning, where the computer is presented with examples of entries, and the goal is to learn a general rule that maps inputs to outputs, and unsupervised learning, where no label is provided to the learning algorithm, leaving it alone to find structures. Deep learning is a branch of machine learning based on numerous layers of artificial neural networks, which are computing systems inspired by the biological neural networks that constitute animal brains. In asteroid dynamics, machine learning methods have been recently used to identify members of asteroid families, small bodies images in astronomical fields, and to identify resonant arguments images of asteroids in three-body resonances, among other applications. Here, we will conduct a full review of available literature in the field and classify it in terms of metrics recently used by other authors to assess the state of the art of applications of machine learning in other astronomical subfields. For comparison, applications of machine learning to Solar System bodies, a larger area that includes imaging and spectrophotometry of small bodies, have already reached a state classified as progressing. Research communities and methodologies are more established, and the use of ML led to the discovery of new celestial objects or features, or new insights in the area. ML applied to asteroid dynamics, however, is still in the emerging phase, with smaller groups, methodologies still not well-established, and fewer papers producing discoveries or insights. Large observational surveys, like those conducted at the Zwicky Transient Facility or at the Vera C. Rubin Observatory, will produce in the next years very substantial datasets of orbital and physical properties for asteroids. Applications of ML for clustering, image identification, and anomaly detection, among others, are currently being developed and are expected of being of great help in the next few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, GS., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. software available from https://www.tensorflow.org/(2015)

  • Akhter, M.F., Hassan, D., Abbas, S.: Predictive ARIMA Model for coronal index solar cyclic data. Astron. Comput. 32, 100403 (2020). https://doi.org/10.1016/j.ascom.2020.100403

    Article  Google Scholar 

  • Aljbaae, S., Souchay, J., Carruba, V., Sanchez, DM., Prado, AFBA.: Influence of Apophis’ spin axis variations on a spacecraft during the 2029 close approach with Earth. Accepted by the Romanian Astronomical Journal (2021) ar**v:2105.14001

  • Ball, N.M., Brunner, R.J.: Data mining and machine learning in astronomy. Int. J. Modern Phys. D 19(7), 1049–1106 (2010). https://doi.org/10.1142/S0218271810017160

    Article  ADS  MATH  Google Scholar 

  • Baron, D.: Machine learning in astronomy: a practical overview. (2019) ar**v e-prints ar**v:1904.07248

  • Bendjoya, P., Zappalà, V.: Asteroid Family Identification, Arizona Univ. Press, pp. 613–618 (2002)

  • Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

    Article  MathSciNet  MATH  Google Scholar 

  • Boehmke, B., Greenwell, B.: Gradient Boosting. Hands-On Machine Learning. Chapman and Hall, London (2019)

    Book  Google Scholar 

  • Box, Jenkins (ed.): Time series analysis. Holden-Day, Forecasting and control, San Francisco (1976)

  • Brownlee, J.: Deep Learning for Time Series, Forecasting Machine Learning Mastery, San Juan, PR, USA (2020)

  • Carruba, V., Aljbaae, S.: Predicting asteroid lightcurves using ARIMA models. In: European Planetary Science Congress, pp. EPSC2021–36 (2021) https://doi.org/10.5194/epsc2021-36

  • Carruba, V., Aljbaae, S., Lucchini, A.: Machine-learning identification of asteroid groups. MNRAS 488(1), 1377–1386 (2019). https://doi.org/10.1093/MNRAS/stz1795

    Article  ADS  Google Scholar 

  • Carruba, V., Aljbaae, S., Domingos, R.C., Lucchini, A., Furlaneto, P.: Machine learning classification of new asteroid families members. MNRAS 496(1), 540–549 (2020). https://doi.org/10.1093/MNRAS/staa1463

    Article  ADS  Google Scholar 

  • Carruba, V., Spoto, F., Barletta, W., Aljbaae, S., Fazenda, Á.L., Martins, B.: The population of rotational fission clusters inside asteroid collisional families. Nat. Astron. 4, 83–88 (2020). https://doi.org/10.1038/s41550-019-0887-8

    Article  ADS  Google Scholar 

  • Carruba, V., Aljbaae, S., Domingos, R.C.: Identification of asteroid groups in the z\(_{1}\) and z\(_{2}\) nonlinear secular resonances through genetic algorithms. Celest. Mech. Dyn. Astron. 133(6), 24 (2021). https://doi.org/10.1007/s10569-021-10021-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Carruba, V., Aljbaae, S., Domingos, R.C., Barletta, W.: Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars. MNRAS 504(1), 692–700 (2021). https://doi.org/10.1093/MNRAS/stab914

    Article  ADS  Google Scholar 

  • Chen, P.W., Wang, J.Y., Lee, H.: Model selection of svms using ga approach. 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat No04CH37541) vol. 3, pp. 2035–2040 (2004)

  • Chen, T., Guestrin, C.: Xgboost. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016) https://doi.org/10.1145/2939672.2939785

  • Chen, Y.T., Lin, H.W., Alexandersen, M., Lehner, M.J., Wang, S.Y., Wang, J.H., Yoshida, F., Komiyama, Y., Miyazaki, S.: Searching for moving objects in HSC-SSP: Pipeline and preliminary results. Publ. Astron. Soc. Jpn. 70, S38 (2018). https://doi.org/10.1093/pasj/psx145

    Article  ADS  Google Scholar 

  • Chipman, H.A., George, E.I., McCulloch, R.E.: Bart: Bayesian additive regression trees. Appl. Stat, Ann (2010). https://doi.org/10.1214/09-AOAS285

    Book  MATH  Google Scholar 

  • Chollet, F. et al.: Keras: The Python Deep Learning library (2018)

  • Cincotta, P.M., Simó, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials - I. Astron. Astrophys. Suppl. 147, 205–228 (2000). https://doi.org/10.1051/aas:2000108

    Article  ADS  Google Scholar 

  • Cortes, C., Vapnik, V.: Support-vector networks. Chem. Biol. Drug Des. 297, 273–297 (2009). https://doi.org/10.1007/%2FBF00994018

  • Cramer, J.: The early origins of the logit model. Stud. Hist. Philos. Sci. Part C Stud. Hist. Philos. Biol. Biomed. Sci. 35(4), 613–626 (2004). https://doi.org/10.1016/j.shpsc.2004.09.003

    Article  Google Scholar 

  • Dalpiaz, et al.: Applied Statistics with R, STAT 420. University of Illinois at Urbana-Champaign, (2021) https://daviddalpiaz.github.io/appliedstats/

  • de Souza, R.S., Krone-Martins, A., Carruba, V., de Cassia, D.R., Ishida, E.E.O., Alijbaae, S., Huaman Espinoza, M., Barletta, W.: Probabilistic modeling of asteroid diameters from Gaia DR2 errors. Res. Notes Am. Astron. Soc. 5(8), 199 (2021). https://doi.org/10.3847/2515-5172/ac205e

    Article  ADS  Google Scholar 

  • Dekany, R., Smith, R.M., Riddle, R., Feeney, M., Porter, M., Hale, D., Zolkower, J., Belicki, J., Kaye, S., Henning, J., Walters, R., Cromer, J., Delacroix, A., Rodriguez, H., Reiley, D.J., Mao, P., Hover, D., Murphy, P., Burruss, R., Baker, J., Kowalski, M., Reif, K., Mueller, P., Bellm, E., Graham, M., Kulkarni, S.R.: The Zwicky transient facility: observing system. Publ. Astron. Soc. Pac. 132(1009), 038001 (2020). https://doi.org/10.1088/1538-3873/ab4ca2

    Article  ADS  Google Scholar 

  • Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74(366a), 427–431 (1979). https://doi.org/10.1080/01621459.1979.10482531

    Article  MathSciNet  MATH  Google Scholar 

  • Duev, D.A., Mahabal, A., Ye, Q., Tirumala, K., Belicki, J., Dekany, R., Frederick, S., Graham, M.J., Laher, R.R., Masci, F.J., Prince, T.A., Riddle, R., Rosnet, P., Soumagnac, M.T.: DeepStreaks: identifying fast-moving objects in the Zwicky Transient Facility data with deep learning. MNRAS 486(3), 4158–4165 (2019). https://doi.org/10.1093/MNRAS/stz1096

    Article  ADS  Google Scholar 

  • Duev, D.A., Bolin, B.T., Graham, M.J., Kelley, M.S.P., Mahabal, A., Bellm, E.C., Coughlin, M.W., Dekany, R., Helou, G., Kulkarni, S.R., Masci, F.J., Prince, T.A., Riddle, R., Soumagnac, M.T., van der Walt, S.J.: Tails: chasing comets with the Zwicky transient facility and deep learning. AJ 161(5):218, (2021) https://doi.org/10.3847/1538-3881/abea7b/meta

  • Erasmus, N., Mommert, M., Trilling, DE., Sickafoose, A.A., van Gend, C., Hora, J.L.: Characterization of near-earth asteroids using KMTNET-SAAO. AJ 154(4):162, (2017) https://doi.org/10.3847/1538-3881/aa88be

  • Erasmus, N., McNeill, A., Mommert, M., Trilling, D.E., Sickafoose, A.A., van Gend, C.: Taxonomy and light-curve data of 1000 serendipitously observed main-belt asteroids. Astrophys. J. Suppl. Ser. 237(1), 19 (2018). https://doi.org/10.3847/1538-4365/aac38f

    Article  ADS  Google Scholar 

  • Feigelson, E.D., Babu, G.J., Caceres, G.A.: Autoregressive times series methods for time domain astronomy. Front. Phys. 6, 80 (2018). https://doi.org/10.3389/fphy.2018.00080

    Article  Google Scholar 

  • Florios, K., Kontogiannis, I., Park, S.H., Guerra, J.A., Benvenuto, F., Bloomfield, D.S., Georgoulis, M.K.: Forecasting solar flares using magnetogram-based predictors and machine learning. Sol. Phys. 293(2), 28 (2018). https://doi.org/10.1007/s11207-018-1250-4

    Article  ADS  Google Scholar 

  • Fluke, C.J., Jacobs, C.: Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. WIREs Data Min. Knowl. Discov. 10(2), e1349 (2020). https://doi.org/10.1002/widm.1349

    Article  Google Scholar 

  • Freund, Y., Schapire, R.: Large margin classification using the perceptron algorithm. Mach. Learn. (1999). https://doi.org/10.1023/A:1007662407062

    Article  MATH  Google Scholar 

  • Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting (1995)

  • Collaboration, G., Spoto, F., Tanga, P., et al.: Gaia data release 2. Observations of solar system objects. A &A 616, A13 (2018). https://doi.org/10.1051/0004-6361/201832900

    Article  Google Scholar 

  • Gowanlock, M.G., Kramer, D.A., Trilling, D.E., Butler, N.R., Donnelly, B.: Fast period searches using the lomb-scargle algorithm on graphics processing units for large datasets and real-time applications. Astron. Comput. 36, 100472 (2021)

    Article  Google Scholar 

  • Gudivada, V., Irfan, M., Fathi, E., Rao, D.: Chapter 5 - cognitive analytics: Going beyond big data analytics and machine learning. In: Gudivada, V.N., Raghavan, V.V., Govindaraju, V., Rao, C. (eds) Cognitive Computing: Theory and Applications, Handbook of Statistics, vol. 35, Elsevier, pp. 169–205, (2016) https://doi.org/10.1016/bs.host.2016.07.010

  • Hill, J., Linero, A., Murray, J.: Bayesian additive regression trees: a review and look forward. Ann. Rev. Stat. Appl. 7(1), 251–278 (2020). https://doi.org/10.1146/annurev-statistics-031219-041110

    Article  MathSciNet  Google Scholar 

  • Ho, T.K.: Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1) - Volume 1, IEEE Computer Society, M, ICDAR ’95, pp. 278–282 (1995)

  • Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998). https://doi.org/10.1109/34.709601

    Article  Google Scholar 

  • Jones, R.L., Jurić, M., Ivezić, V.: Asteroid discovery and characterization with the large synoptic survey telescope. Proc. Int. Astron. Union 10(S318), 282–292 (2015). https://doi.org/10.1017/s1743921315008510

    Article  Google Scholar 

  • Li, X., Li, J., **a, Z.J., Georgakarakos, N.: Machine-learning prediction for mean motion resonance behaviour - The planar case. MNRAS 511(2), 2218–2228 (2022). https://doi.org/10.1093/MNRAS/stac166

    Article  ADS  Google Scholar 

  • Lin, H.W., Chen, Y.T., Wang, J.H., Wang, S.Y., Yoshida, F., Ip, W.H., Miyazaki, S., Terai, T.: Machine-learning-based real-bogus system for the HSC-SSP moving object detection pipeline. Publ. Astron. Soc. Jpn. 70, S39 (2018). https://doi.org/10.1093/pasj/psx082

    Article  Google Scholar 

  • Liu, C., Gong, S., Li, J.: Stability time-scale prediction for main-belt asteroids using neural networks. MNRAS 502(4), 5362–5369 (2021). https://doi.org/10.1093/MNRAS/stab080

    Article  ADS  Google Scholar 

  • Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008) https://doi.org/10.1109/ICDM.2008.17

  • MacQueen, JB.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds) Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

  • Mahabal, A., Rebbapragada, U., Walters, R., Masci, F.J., Blagorodnova, N., van Roestel, J., Ye, Q.Z., Biswas, R., Burdge, K., Chang, C.K., Duev, D.A., Golkhou, V.Z., Miller, A.A., Nordin, J., Ward, C., Adams, S., Bellm, E.C., Branton, D., Bue, B., Cannella, C., Connolly, A., Dekany, R., Feindt, U., Hung, T., Fortson, L., Frederick, S., Fremling, C., Gezari, S., Graham, M., Groom, S., Kasliwal, M.M., Kulkarni, S., Kupfer, T., Lin, H.W., Lintott, C., Lunnan, R., Parejko, J., Prince, T.A., Riddle, R., Rusholme, B., Saunders, N., Sedaghat, N., Shupe, D.L., Singer, L.P., Soumagnac, M.T., Szkody, P., Tachibana, Y., Tirumala, K., van Velzen, S., Wright, D.: Machine learning for the zwicky transient facility. Publ. Astron. Soc. Pac. 131(997), 038002 (2019). https://doi.org/10.1088/1538-3873/aaf3fa

    Article  ADS  Google Scholar 

  • Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN (2015)

  • Mills, T.C. (ed.): Economic Forecasting, 1–2, vol Two volume set. Edward Elgar Publishing, (1999) https://EconPapers.repec.org/RePEc:elg:eebook:1506

  • Mommert, M., Trilling, DE., Borth, D., Jedicke, R., Butler, N., Reyes-Ruiz, M., Pichardo, B., Petersen, E., Axelrod, T., Moskovitz, N.: First results from the rapid-response spectrophotometric characterization of near-earth objects using UKIRT. AJ 151(4):98 (2016) https://doi.org/10.3847/0004-6256/151/4/98

  • Moschini, G., Houssou, R., Bovay, J., Robert-Nicoud, S.: Anomaly and fraud detection in credit card transactions using the ARIMA model. (2020) ar**v e-prints ar**v:2009.07578

  • Pearson, K.: Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. Ser. I 58, 240–242 (1895)

    Article  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: Machine Learning in Python. (2012) ar**v e-prints ar**v:1201.0490

  • Penttilä, A., Hietala, H., Muinonen, K.: Asteroid spectral taxonomy using neural networks. A &A 649, A46 (2021). https://doi.org/10.1051/0004-6361/202038545

    Article  Google Scholar 

  • Penttilä, A., Fedorets, G., Muinonen, K.: Taxonomy of asteroids from the legacy survey of space and time using neural networks. Front. Astron. Space Sci. (2022) https://doi.org/10.3389/fspas.2022.816268

  • Pesenson, M.Z., Pesenson, I.Z., McCollum, B.: The data big bang and the expanding digital universe: high-dimensional, complex and massive data sets in an inflationary epoch. Adv. Astron. 2010, 350891 (2010). https://doi.org/10.1155/2010/350891

    Article  ADS  Google Scholar 

  • Piryonesi, S.M., El-Diraby, T.: Data analytics in asset management: Cost-effective prediction of the pavement condition. J. Infrastruct. Syst. (2020). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000512

    Article  Google Scholar 

  • Pravec, P., Vokrouhlický, D., Polishook, D., Scheeres, D.J., Harris, A.W., Galád, A., Vaduvescu, O., Pozo, F., Barr, A., Longa, P., Vachier, F., Colas, F., Pray, D.P., Pollock, J., Reichart, D., Ivarsen, K., Haislip, J., Lacluyze, A., Kušnirák, P., Henych, T., Marchis, F., Macomber, B., Jacobson, S.A., Krugly, Y.N., Sergeev, A.V., Leroy, A.: Formation of asteroid pairs by rotational fission. Nature 466(7310), 1085–1088 (2010). https://doi.org/10.1038/nature09315

    Article  ADS  Google Scholar 

  • Pugliatti, M., Topputo, F.: Small-body shape recognition with convolutional neural network and comparison with explicit features based methods. AAS/AIAA Astrodynamics Specialist Conference, pp. 1–20 (2020)

  • R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

  • Rosenblatt, F.: Principles of neurodynamics perceptrons and the theory of brain mechanisms. Am. J. Psychol. 76, 705 (1963)

    Article  Google Scholar 

  • van Rossum, G.: Python tutorial. Tech. Rep. CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam (1995)

  • Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall (2010)

  • Sanchez, D.M., Prado, A.F.B.A.: On the use of mean motion resonances to explore the haumea system. AAS/AIAA Astrodyn. Spec. Conf. 162, 1507–1524 (2017)

    Google Scholar 

  • Sanchez, D.M., Prado, A.F.B.A.: Searching for less-disturbed orbital regions around the near-earth asteroid 2001 SN263. J. Spacecr. Rocket. 56(6), 1775–1785 (2019). https://doi.org/10.2514/1.A34402

    Article  ADS  Google Scholar 

  • Sander, J., Ester, M., Kriegel, H., **aowei, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Min. Knowl. Disc. 2, 169–194 (1998)

    Article  Google Scholar 

  • Seabold, S., Perktold, J.: Statsmodels: Econometric and statistical modeling with python. In: 9th Python in Science Conference (2010)

  • Smirnov, E.A., Markov, A.B.: Identification of asteroids trapped inside three-body mean motion resonances: a machine-learning approach. MNRAS 469(2), 2024–2031 (2017). https://doi.org/10.1093/MNRAS/stx999

    Article  ADS  Google Scholar 

  • Smullen, R.A., Volk, K.: Machine learning classification of Kuiper belt populations. MNRAS 497(2), 1391–1403 (2020). https://doi.org/10.1093/MNRAS/staa1935

    Article  ADS  Google Scholar 

  • Strigl, D., Kofler, K., Podlipnig, S.: Performance and scalability of gpu-based convolutional neural networks. In: 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2010), IEEE Computer Society, Los Alamitos, CA, USA, (2010) https://doi.org/10.1109/PDP.2010.43

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, AN., Kaiser, L., Polosukhin, I.: Attention is all you need. (2017) ar**v:1706.03762

  • Wang, D.: Unsupervised learning: foundations of neural computation. AI Magaz. 22(2), 101 (2001). https://doi.org/10.1609/aimag.v22i2.1565

    Article  Google Scholar 

  • Yazdanbakhsh, A., Seshadri, K., Akin, B., Laudon, J., Narayanaswami, R.: An evaluation of edge TPU accelerators for convolutional neural networks. (2021) ar**v e-prints ar**v:2102.10423

  • Zhang, J., Zhang, Y., Zhao, Y.: Imbalanced learning for RR lyrae stars based on SDSS and GALEX databases. AJ 155(3):108, (2018) https://doi.org/10.3847/1538-3881/aaa5b1

Download references

Acknowledgements

We are grateful to two anonymous reviewers for helpful and constructive comments that much increased the quality of this work. We would like to thank the Brazilian National Research Council (CNPq, grant 304168/2021-1), the São Paulo Research Foundation (FAPESP, grant 2016/024561-0), and the Institutional Training program (PCI/INPE, subproject 6.8.1, Public Call 01/2021). We are grateful to Dr. E. Smirnov and Dr. D. Duev for allowing us to use figures from their papers (Smirnov and Markov 2017; Duev et al. 2021), and to Dr. E. Smirnov for reading a preliminary version of this paper and for useful comments and suggestions. VC and RC are part of “Grupo de Dinâmica Orbital & Planetologia (GDOP)” (Research Group in Orbital Dynamics and Planetology) at UNESP, campus of Guaratinguetá. This is a publication from the MASB (Machine-learning applied to small bodies, https://valeriocarruba.github.io/Site-MASB/) research group. Questions on this paper can also be sent to the group email address: mlasb2021@gmail.com

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Valerio Carruba, Safwan Aljbaae and Rita Cassia Domingos. The first draft of the manuscript was written by Valerio Carruba and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to V. Carruba.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on Main Belt Dynamics.

Guest Editors: Christoph Lhotka, Vladislav Sidorenko and Alessandra Celletti.

Appendix 1: data on current applications of ML in asteroid dynamics

Appendix 1: data on current applications of ML in asteroid dynamics

Table 2 Reference data used to classify the status of application of machine learning to recent literature

In this section we report the data used to classify current literature according to Fluke and Jacobs (2020) category scheme, as discussed in Sect. 4. Our data are shown in Table 2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carruba, V., Aljbaae, S., Domingos, R.C. et al. Machine learning applied to asteroid dynamics. Celest Mech Dyn Astron 134, 36 (2022). https://doi.org/10.1007/s10569-022-10088-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-022-10088-2

Keywords

Navigation