Log in

The flattenings of the layers of rotating planets and satellites deformed by a tidal potential

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We consider the Clairaut theory of the equilibrium ellipsoidal figures for differentiated nonhomogeneous bodies in nonsynchronous rotation (Tisserand, Mécanique Céleste, t.II, Chaps. 13 and 14) adding to it a tidal deformation due to the presence of an external gravitational force. We assume that the body is a fluid formed by \(n\) homogeneous layers of ellipsoidal shape and we calculate the external polar flattenings \(\epsilon _k,\, \mu _k\) and the mean radius \(R_k\) of each layer or, equivalently, their semiaxes \(a_k\), \(b_k\), and \(c_k\). To first order in the flattenings, the general solution can be written as \(\epsilon _k=\mathcal {H}_k\epsilon _{h}\) and \(\mu _k=\mathcal {H}_k\mu _{h}\), where \(\mathcal {H}_k\) is a characteristic coefficient for each layer that depends only on the internal structure of the body and \(\epsilon _{h}\) and \(\mu _{h}\) are the flattenings of the equivalent homogeneous problem. For the continuous case, we study the Clairaut differential equation for the flattening profile using the Radau transformation to find the boundary conditions when the tidal potential is added. Finally, the theory is applied to several examples: (i) a body composed of two homogeneous layers, (ii) bodies with simple polynomial density distribution laws, and (iii) bodies following a polytropic pressure-density law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The exact relation is \(\epsilon _J = 3 \epsilon _M\frac{a^3}{r^3} \frac{M}{M+m_T}\). The approximation is valid only if the mass of the deformed body and the orbital eccentricity are small, that is \(r \simeq a\) and \(m_T << M\).

  2. See Appendix C in the online supplement for more details.

  3. For the details of the calculation of \(\delta V_2^{k}\), see Eq. (A.13) in Appendix A (in the online supplement).

  4. An elementary calculation allows one to find the relationship \(\frac{C}{m_TR^2}\approx \frac{2}{3}\frac{\int _0^1 \widehat{\rho }z^4 \hbox {d}z}{\int _0^1 \widehat{\rho }z^2\hbox {d}z}=\frac{2}{5}\times \frac{3+\alpha }{5+\alpha }\).

References

  • Bizyaev, I.A., Borisov, A.V., Mamaev, I.S.: Figures of equilibrium of an inhomogeneous self-gravitating fluid. Celest. Mech. Dyn. Astron. 122, 1–26 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Borisov, A.V., Mamaev, I.S., Kilin, A.A.: The Hamiltonian dynamics of self-gravitating liquid and gas ellipsoids. Regul. Chaotic Dyn. 14, 179–217 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Bullen, K.E.: The Earth’s Density. Chapman and Hall, London (1975)

    Book  Google Scholar 

  • Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. University of Chicago Press, Chicago (1939)

    Google Scholar 

  • Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven (1969)

    MATH  Google Scholar 

  • Clairaut, A.C.: Théorie de la Figure de la Terre, Tirée des Principes de l’Hydrostratique. Paris Courcier, Paris (1743)

  • Collins, G.W.: The Fundamentals of Stellar Astrophysics. W.H. Freeman and Co., New York (1989)

    Google Scholar 

  • Correia, A., Rodríguez, A.: On the equilibrium figure of close-in planets and satellites. Astrophys. J. 767, 128–132 (2013)

    Article  ADS  Google Scholar 

  • Darwin, G.H.: On the secular change in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. 171, 713–891 (1880). (repr. Scientific Papers, Cambridge, Vol. II, 1908)

    Article  MATH  Google Scholar 

  • Esteban, E.P., Vazquez, S.: Rotating stratified heterogeneous oblate spheroid in Newtonian physics. Celest. Mech. Dyn. Astron. 81, 299–312 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Ferraz-Mello, S., Rodríguez, A., Hussmann, H.: Tidal frition in close-in satellites and exoplanets. The Darwin theory re-visited. Celest. Mech. Dyn. Astron. 101, 171–201 (2008). Errata: 104, 319–320

    Article  ADS  MATH  Google Scholar 

  • Ferraz-Mello, S.: Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach. Celest. Mech. Dyn. Astron. 116, 109–140 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Hubbard, W.B.: Concentric Maclaurin spheroid models of rotating liquid planets. Astrophys. J. 768, 43 (2013)

    Article  ADS  Google Scholar 

  • Jardetzky, W.S.: Theories of Figures of Celestial Bodies. Interscience, New York (1958). (repr. Dover, Mineola, NY, 2005)

    MATH  Google Scholar 

  • Jeans, J.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1929). (repr. Dover, New York, 1961)

    MATH  Google Scholar 

  • Jeffreys, H.S.: The figures of rotating planets. Mon. Not. R. Astron. Soc. 113, 97 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kong, D., Zhang, K., Schubert, G.: Shapes of two-layer models of rotating planets. J. Geophys. Res. 115, 12003 (2010)

    Article  Google Scholar 

  • Leconte, J., Lai, D., Chabrier, G.: Distorted, non-spherical transiting planets: impact on the transit depth and on the radius determination. Astron. Astrophys. 528, A41 (2011). Erratum: Astronomy & Astrophysics, 536, C1

    Article  ADS  Google Scholar 

  • Lyapounov, A.: Sur certaines séries de figures d’equilibre d’un liquide héterogène en rotation. Acad. Sci. URSS, Part I (1925)

  • Lyapounov, A.: Sur certaines séries de figures d’equilibre d’un liquide héterogène en rotation. Acad. Sci. URSS, Part II (1927)

  • Montalvo, D., Martínez, F.J., Cisneros, J.: On equilibrium figures of ideal fluids in the form of confocal spheroids rotating with common and different angular velocities. Rev. Mexicana Astron. Astrof. 5, 293–300 (1983)

    ADS  Google Scholar 

  • Munk, W.H., MacDonald, G.J.F.: The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, Cambridge (1960)

    Google Scholar 

  • Poincaré, H.: Figures d’equilibre d’una masse fluide (Leçons professées à la Sorbenne en 1900) Gauthier-Villars, Paris (1902)

  • Tisserand, F.: Traité de Mécanique Céleste, Tome II. Gauthier-Villars, Paris (1891)

    Google Scholar 

  • Tricarico, P.: Multi-layer hidrostatic equilibrium of planets and synchronous Moons: Theory and application to Ceres and Solar System Moons. Astrophys. J. 782, 12 (2014)

    Article  Google Scholar 

  • Van Hoolst, T., Rambaux, N., Karatekin, Ö., Dehant, V., Rivoldini, A.: The librations, shape, and icy shell of Europa. Icarus 195, 386–399 (2008)

    Article  ADS  Google Scholar 

  • Wavre, R.: Figures planétaries et Géodesie. Gauthier-Villars et cie, Paris (1932)

    Google Scholar 

  • Zharkov, V.N., Trubitsyn, V.P.: Figures planétaries et Géodesie. Astronomy and Astrophysics Series. Pachart, Tucson (1978)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank one anonymous referee for comments and suggestions that helped to improve the manuscript. This investigation was supported by the National Council for Scientific and Technological Development (CNPq), Grants 141684/2013-5 and 306146/2010-0, and by St. Petersburg University, Grant 6.37.341.2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo A. Folonier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folonier, H.A., Ferraz-Mello, S. & Kholshevnikov, K.V. The flattenings of the layers of rotating planets and satellites deformed by a tidal potential. Celest Mech Dyn Astr 122, 183–198 (2015). https://doi.org/10.1007/s10569-015-9615-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9615-6

Keywords

Navigation