Log in

Simple and Strong Dative Attachment of α-Diimine Nickel (II) Catalysts on Supports for Ethylene Polymerization with Controlled Morphology

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this article, preparation of novel spherical MgCl2 supported α-diimine nickel (II) catalysts for ethylene polymerization in slurry phase is reported. α-Diimine ligands were synthesized by condensation reaction of 2, 6-disubstituted alkyls or aryls anilines and Ace naphthoquinone Which have hydroxyl functionality in their para-position. Hydroxyl functionalized α-diimine attached strongly on to the spherical MgCl2 support surface by dative bonding. No linker was needed to attach the complexes onto the support surface and the amount of loaded Nickel was controllable to improve morphology and especially bulk density of polymer powder. A significant reduction in catalysts activity has happened when homogeneous catalysts were supported onto silica but this reduction was decreased when they were supported onto thermally treated spherical MgCl2. As homogeneous bis(N,N′-(4-(3-hydroxyl-propyl)-2,6-di[(4-tert-butyl-phenyl)-phenyl) amino] Ace naphthoquinone Nickel dibromide(d) showed the highest activity among other evaluated homogeneous catalysts, its MgCl2 supported catalyst (d/S-MgCl2) has shown the highest activity among MgCl2 supported catalysts too. These MgCl2 supported catalysts were pre-polymerized in presence of ethylene monomer in the mild polymerization condition to yield a pre-polymerized catalyst with polymer/catalyst weight ratio equal to six. Ethylene polymerization was carried out to make spherical particles of polyethylene without reactor fouling by these pre-polymerized catalysts. Clearly, it is shown in SEM images that the spherical morphology of MgCl2 support is replicated in the produced polymer. The molecular weight and molecular weight distribution of produced polymer with MgCl2 supported catalysts were higher than those produced by homogeneous catalysts.

Graphic Abstract

α–Diimine nickel (II) complexes have hydroxy functionality where produce strong dative bonding onto spherical MgCl2. This bonding is strong enough that these catalysts are suitable for slurry polymerization of ethylene without reactor fouling due to catalyst leaching from support. The chemical structure of MgCl2 leads to high active supported catalysts. The molecular weight and polydispersity index of produced polymrers using these supported catalysts are higher than those produced by equivalent homogeneous catalysts and are controllable by selection of appropriate ligand for used α–diimine nickel (II) complex or hydrogen concentration in ethylene polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meinhard D, Wegner M, Kipiani G, Hearley A, Reuter P, Fischer S, Marti O, Rieger B (2007) J Am Chem Soc 129(29):9182–9191

    Article  CAS  PubMed  Google Scholar 

  2. Schmid M, Eberhardt R, Klinga M, Leskela M, Rieger B (2001) Organometallics 20(11):2321–2330

    Article  CAS  Google Scholar 

  3. Yiyoung C, Soares JBP (2010) Polymer 51(11):2271–2276

    Article  CAS  Google Scholar 

  4. Hlatky GG (2000) Chem Rev 100:1347–1376

    Article  CAS  PubMed  Google Scholar 

  5. Mckenna TF, Soares JBP (2001) Chem Eng Sci 56:3931–3949

    Article  CAS  Google Scholar 

  6. Chien JCW (1999) Top Catal 7:23–26

    Article  CAS  Google Scholar 

  7. Carnahan EM, Jacobsen GB (2000) Catal Technol 4:74–88

    CAS  Google Scholar 

  8. Pflugl PP, Brookhart M (2002) Macromolecules 35:6074–6076

    Article  CAS  Google Scholar 

  9. Ye Z, Alsyouri H, Zhu S, Lin YS (2003) Polymer 44:969

    Article  CAS  Google Scholar 

  10. Xue X, Yang X, **ao Y, Zhang Q, Wang H (2004) Polymer 45:2877–2882

    Article  CAS  Google Scholar 

  11. Mackenzie BP, Moody LS, Killian CN, Lavoie GG (1998) Patent WO 9962968

  12. Vaughan GA, Canich JAM, Matsunaga PT (1996) Patent WO9748736

  13. Simon LC, Patel H, Soares JBP, De Souza RF (2001) Macromol Chem Phys 202:3237–3247

    Article  CAS  Google Scholar 

  14. Alobaidi F, Ye Z, Zhu S (2003) Macromol Chem Phys 204:1653

    Article  CAS  Google Scholar 

  15. Bennett AM, Moody LS, McLain SD. WO 9856832

  16. Choi Y, Soares JBP (2009) Macromol Chem Phys 210:1979–1988

    Article  CAS  Google Scholar 

  17. Schrekker HS, Kotov V, Preishuber-Pflugl P, White P, Brookhart M (2006) Macromolecules 39:6341–6354

    Article  CAS  Google Scholar 

  18. Severn JR, Chadwick JC, Van Castelli V (2004) Macromolecules 37:6258–6259

    Article  CAS  Google Scholar 

  19. Jiang H, He F, Wang H (2009) J Polym Res 16:183–189

    Article  CAS  Google Scholar 

  20. Jiang H, Wu Q, Zhu F, Wang H (2007) J Appl Polym Sci 103:1483–1489

    Article  CAS  Google Scholar 

  21. Jiang H, Lu J, Wang F (2010) Polm Bull. https://doi.org/10.1007/s00289-010-0244-7

    Article  Google Scholar 

  22. Canich JAM, Gindelberger DE, Matsunaga PT,Vaughan GA, Squire KR. WO 9748736

  23. Kirsten MC (1999) Top Catal 7:89

    Article  Google Scholar 

  24. Chen Z, Brookhart M (2018) Acc Chem Res 51:1831

    Article  CAS  PubMed  Google Scholar 

  25. Kaiser JM, Long BK (2018) Coord Chem Rev 372:141

    Article  CAS  Google Scholar 

  26. Tan C, Chen C (2019) Angew Chem Int Ed 58:7192

    Article  CAS  Google Scholar 

  27. Wang F, Chen C (2019) Polym Chem 10:2354

    Article  CAS  Google Scholar 

  28. Jalali Dil E, Pourmahdian S, Vatankhah M, Afshar Taromi F (2010) Polym Bull 64:445–457

    Article  CAS  Google Scholar 

  29. Monji M, Pourmahdian S, Vatankhah M, Afshar Taromi F (2009) J Appl Polym Sci 112:3663–3668

    Article  CAS  Google Scholar 

  30. Kreutzer J (2018) Nat Rev Chem 2:6

    Article  CAS  Google Scholar 

  31. Chen C (2018) ACS Catal 8:5506

    Article  CAS  Google Scholar 

  32. Vatankhah-Varnoosfaderani, M, Pourmahdian S, Afshar-Taromi F, Amini A, Karimkhani V, Submitted in Macromolecules, ma-2011-011014.

  33. Gibson VC (2006) Science 312:703–704

    Article  CAS  PubMed  Google Scholar 

  34. Zintl M, Rieger B (2007) Angew Chem Int Ed 46:333–335

    Article  CAS  Google Scholar 

  35. Karimi B, Enders D (2006) Org Lett 8(6):1237–1240

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Kianfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianfar, E., Azimikia, R. & Faghih, S.M. Simple and Strong Dative Attachment of α-Diimine Nickel (II) Catalysts on Supports for Ethylene Polymerization with Controlled Morphology. Catal Lett 150, 2322–2330 (2020). https://doi.org/10.1007/s10562-020-03116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03116-z

Keywords

Navigation