Log in

Controllable Synthesis of MoS2/h-CdS/c-CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution Under Visible Light Irradiation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Firstly, h-CdS/c-CdS homojunction was prepared by solvothermal method with controlling the Cd-to-S molar ratio. Then, the MoS2/h-CdS/c-CdS nanocomposites were constructed by ultrasonic method with different MoS2 amount. The experimental results showed that when the molar ratio of Cd and S was 1:1 and the amount of MoS2 was 1.5 wt%, the MoS2/h-CdS/c-CdS nanocomposites exhibited excellent photocatalytic performance for hydrogen evolution under visible light. The total amount of hydrogen evolution was 3753.12 µmol for 5 h, and its average hydrogen evolution rate was 40.79 mmol h−1 g−1 with an apparent quantum efficiency of 38.16% irradiated at 420 nm, which was about 7.3 times when compared with the h-CdS/c-CdS homojunction (Cd:S = 1:8). The enhanced photocatalytic performance of MoS2/h-CdS/c-CdS could be attributed to the improved specific surface area and formation of well bonded interface structure, which not only enhanced the response to visible light but also decreased the recombination rates of photogenerated charge carriers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kamat PV (2012) Acc Chem Res 45:1906

    Article  CAS  Google Scholar 

  2. Wheeler DA, Zhang JZ (2013) Adv Mater 25:2878

    Article  CAS  Google Scholar 

  3. Chen X, Selloni A (2014) Chem Rev 114:9281

    Article  CAS  Google Scholar 

  4. Joya KS, Joya YF, Ocakoglu K, van de Krol R (2013) Angew Chem Int Ed 52:10426

    Article  CAS  Google Scholar 

  5. Zhang K, Guo L (2013) Catal Sci Technol 3:1672

    Article  CAS  Google Scholar 

  6. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  Google Scholar 

  7. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) J Am Chem Soc 133:10878

    Article  CAS  Google Scholar 

  8. Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S (1998) Langmuir 14:5154

    Article  CAS  Google Scholar 

  9. **ao FX, Miao J, Liu B (2014) J Am Chem Soc 136:1559

    Article  CAS  Google Scholar 

  10. Li Y, Tang L, Peng S, Li Z, Lu G (2012) CrystEngComm 14:6974

    Article  CAS  Google Scholar 

  11. Peng T, Li K, Zeng P, Zhang Q, Zhang X (2012) J Phys Chem C 116:22720

    Article  CAS  Google Scholar 

  12. He J, Chen L, Wang F, Liu Y, Chen P, Au CT, Yin SF (2016) ChemSusChem 9:624

    Article  CAS  Google Scholar 

  13. Wang K, Qincheng W, **ao L, Cu C, Li Z (2018) Catal Lett 148:523

    Article  CAS  Google Scholar 

  14. Cui W, Liu L, Ma S, Liang Y, Zhang Z (2013) Catal Today 207:44

    Article  CAS  Google Scholar 

  15. Jiang C, Xu X, Mei M, Shi FN (2018) ACS Sustain Chem Eng 6:854

    Article  CAS  Google Scholar 

  16. Lunawat PS, Kumar R, Gupta NM (2008) Catal Lett 121:226

    Article  CAS  Google Scholar 

  17. Yu ZB, **e YP, Liu G, Lu GQM, Ma XL, Cheng HM (2013) J Mater Chem A 1:2773

    Article  CAS  Google Scholar 

  18. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Li C (2009) J Catal 266:165

    Article  CAS  Google Scholar 

  19. Zhang J, Wageh S, Al-Ghamdi A, Yu J (2016) Appl Catal B 192:101

    Article  CAS  Google Scholar 

  20. Wang X, Xu Q, Li M, Shen S, Wang X, Wang Y, Feng Z, Shi J, Han H, Li C (2012) Angew Chem Int Ed 51:13089

    Article  CAS  Google Scholar 

  21. Daskalaki VM, Antoniadou M, Puma GL, Kondarides DI, Lianos P (2010) Environ Sci Technol 44:7200

    Article  CAS  Google Scholar 

  22. Cheng J, Feng J, Pan W (2015) ACS Appl Mater Interfaces 7:9638

    Article  CAS  Google Scholar 

  23. Xu Z, Li H, Wu Z, Sun J, Ying Z, Wu J, Xu N (2016) J Mater Chem C 4:7501

    Article  CAS  Google Scholar 

  24. **e YP, Yu ZB, Liu G, Ma XL, Cheng HM (2014) Energy Environ Sci 7:1895

    Article  CAS  Google Scholar 

  25. Chen J, Wu XJ, Yin L, Li B, Hong X, Fan Z, Chen B, Xue Z, Zhang H (2015) Angew Chem Int Ed 54:1210

    Article  CAS  Google Scholar 

  26. Villa K, Domènech X, García-Pérez UM, Peral J (2015) Catal Lett 146:1

    Google Scholar 

  27. Ma S, Xu X, **e J, Li X (2017) Chin J Catal 38:1970

    Article  CAS  Google Scholar 

  28. Zhao L, Jia J, Yang Z, Yu J, Wang A, Sang Y, Zhou W, Hong L (2017) Appl Catal B 210:290

    Article  CAS  Google Scholar 

  29. Wu A, Tian C, Jiao Y, Yan Q, Yang G, Fu H (2017) Appl Catal B 203:955

    Article  CAS  Google Scholar 

  30. Yin Y, Han J, Zhang Y, Zhang X, Xu P, Yuan Q, Samad L, Wang X, Wang Y, Zhang Z, Zhang P, Cao X, Song B, ** S (2016) J Am Chem Soc 138:7965

    Article  CAS  Google Scholar 

  31. Ting LRL, Deng Y, Ma L, Zhang YJ, Peterson AA, Yeo BS (2016) ACS Catal 6:861

    Article  CAS  Google Scholar 

  32. Lei Y, Hou J, Wang F, Ma X, ** Z, Xu J (2017) Appl Surf Sci 420:456

    Article  CAS  Google Scholar 

  33. Wageh S, Maize M, Han S, Al-Ghamdi AA, Fang X (2014) RSC Adv 4:24110

    Article  CAS  Google Scholar 

  34. Silva LA, Ryu SY, Choi J, Choi W, Hoffmann MR (2008) J Phys Chem C 112:12069

    Article  CAS  Google Scholar 

  35. Zhu G, Liu J, Zheng Q, Zhang R, Li D, Banerjee D, Cahill DG (2016) Nat Commun 7:13211

    Article  CAS  Google Scholar 

  36. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Nat Mater 11:963

    Article  CAS  Google Scholar 

  37. Han B, Liu S, Zhang N, Xu YJ, Tang ZR (2017) Appl Catal B 202:298

    Article  CAS  Google Scholar 

  38. Di T, Zhu B, Zhang J, Cheng B, Yu J (2016) Appl Surf Sci 389:775

    Article  CAS  Google Scholar 

  39. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253

    Article  CAS  Google Scholar 

  40. Li K, Han M, Chen R, Li SL, **e SL, Mao C, Bu X, Cao XL, Dong LZ, Feng P, Lan YQ (2016) Adv Mater 28:8906

    Article  CAS  Google Scholar 

  41. Yin XL, He GY, Sun B, Jiang WJ, Xue DJ, **a AD, Wan LJ, Hu JS (2016) Nano Energy 28:319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51770000) and the 111 Project “New Materials and Technology for Clean Energy” (B18018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Lv or Yucheng Wu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 649 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Dong, H., Wang, B. et al. Controllable Synthesis of MoS2/h-CdS/c-CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution Under Visible Light Irradiation. Catal Lett 148, 3445–3453 (2018). https://doi.org/10.1007/s10562-018-2516-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2516-z

Keywords

Navigation