Log in

A Novel Route to the Preparation of Carbon Supported Nickel Phosphide Catalysts by a Microwave Heating Process

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A simple and efficient approach based on microwave heating process was developed to prepare carbon supported nickel phosphide. In this approach, red phosphorus was used as a P source and carbon acted as both the support and the microwave absorbent. The red phosphorus was homogeneously mixed with Ni-impregnated carbon by milling, and then subjected to microwave heating. After several minutes by microwave heating in Ar or H2 atmosphere, the nickel phosphide, Ni2P, was produced on the carbon support, while the temperature of the sample bed was only 473 K or even lower during the reaction. It was also found that the preparation atmosphere had significant effects on the phosphide formation. Compared to the preparation in Ar, the nickel phosphides prepared in H2 were more readily formed and more highly dispersed on the carbon support due to PH3 formation during the reduction process. The as-prepared nickel phosphide catalysts exhibited much higher activities in selective hydrogenation of 1,3-butadiene compared to that prepared by the conventional heating method, which was attributed to the high dispersion of Ni2P prepared by the microwave heating method.

Graphical Abstract

We report a simple and efficient route to prepare activated carbon supported nickel phosphide via microwave heating. The whole synthesis time is less than 7 minutes, and the catalyst has a uniform particle size distribution and a high dispersion by microwave heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oyama ST (2003) J Catal 216:343

    Article  CAS  Google Scholar 

  2. Wang H, Shu Y, Zheng M, Zhang T (2008) Catal Lett 124:219

    Article  CAS  Google Scholar 

  3. Nozaki F, Tokumi M (1983) J Catal 79:207

    Article  CAS  Google Scholar 

  4. Oyama ST, Wang X, Lee YK, Bando K, Requejo FG (2002) J Catal 210:207

    Article  CAS  Google Scholar 

  5. Burns AW, Gaudette AF, Bussell ME (2008) J Catal 260:262

    Article  CAS  Google Scholar 

  6. Wang X, Clark P, Oyama ST (2002) J Catal 208:321

    Article  CAS  Google Scholar 

  7. Sawhill SJ, Phillips DC, Bussell ME (2003) J Catal 215:208

    Article  CAS  Google Scholar 

  8. Sawhill SJ, Layman KA, Van Wyk DR, Engelhard MH, Wang C, Bussell ME (2005) J Catal 231:300

    Article  CAS  Google Scholar 

  9. Wang A, Ruan L, Teng Y, Li X, Lu M, Ren J, Wang Y, Hu Y (2005) J Catal 229:314

    Article  CAS  Google Scholar 

  10. Korányi TI, Vít Z, Poduval DG, Ryoo R, Kim HS, Hensen EJM (2008) J Catal 253:119

    Article  Google Scholar 

  11. Li W, Dhandapani B, Oyama ST (1998) Chem Lett 3:207

    Article  Google Scholar 

  12. Yang S, Prins R (2005) Chem Commun 33:4178

    Article  Google Scholar 

  13. Yang S, Liang C, Prins R (2006) J Catal 237:118

    Article  CAS  Google Scholar 

  14. **e Y, Su H, Qian X, Liu X, Qian Y (2000) J Solid State Chem 149:88

    Article  CAS  Google Scholar 

  15. Aitken JA, Ganza-Hazen V, Brock SL (2005) J Solid State Chem 178:970

    Article  Google Scholar 

  16. Barry BM, Gillan EG (2008) Chem Mater 20:2618

    Article  CAS  Google Scholar 

  17. **ng G, Li W, Zheng M, Tao K (2009) J Catal 263:1

    Article  Google Scholar 

  18. Perera SC, Tsoi G, Wenger LE, Brock SL (2003) J Am Chem Soc 125:13960

    Article  CAS  Google Scholar 

  19. Hu X, Yu J (2008) Chem Mater 20:6743

    Article  CAS  Google Scholar 

  20. Wang A, Qin M, Guan J, Wang L, Guo H, Li X, Wang Y, Prins R, Hu Y (2008) Angew Chem Int Ed 47:6052

    CAS  Google Scholar 

  21. Galema SA (1997) Chem Soc Rev 26:233

    Article  CAS  Google Scholar 

  22. Zhu Y, Wang W, Qi R, Hu X (2004) Angew Chem Int Ed 43:1410

    Article  CAS  Google Scholar 

  23. Panda AB, Glaspell G, El-Shall MS (2006) J Am Chem Soc 128:2790

    Article  CAS  Google Scholar 

  24. Celer EB, Jaroniec M (2006) J Am Chem Soc 128:14408

    Article  CAS  Google Scholar 

  25. Xu L, Ding Y, Chen C, Zhao L, Rimkus C, Joesten R, Suib SL (2008) Chem Mater 20:308

    Article  CAS  Google Scholar 

  26. Yu J, Hu X, Li Q, Zhang L (2005) Chem Commun 21:2704

    Article  Google Scholar 

  27. Yu J, Hu X, Li Q, Zhang Z, Xu Y (2005) Chem Eur J 12:548

    Article  CAS  Google Scholar 

  28. Hu X, Yu J (2006) Chem Asian J 1:605

    Article  CAS  Google Scholar 

  29. Liang C, Ding L, Wang A, Ma Z, Qiu J, Zhang T (2009) Ind Eng Chem Res 48:3244

    Article  CAS  Google Scholar 

  30. Shu Y, Oyama ST (2005) Carbon 43:1517

    Article  CAS  Google Scholar 

  31. Tang J, Zhang T, Liang D, Sun X, Lin L (2000) Chem Lett 8:916

    Article  Google Scholar 

  32. Wang X, Wang A, Wang X, Zhang T (2007) Energy Fuels 21:867

    Article  CAS  Google Scholar 

  33. Wang H, Shu Y, Wang A, Wang J, Zheng M, Wang X, Zhang T (2008) Carbon 46:2076

    Article  CAS  Google Scholar 

  34. Boitiaux JP, Cosyns J, Vasudevan S (1983) Appl Catal 6:41

    Article  CAS  Google Scholar 

  35. Moyes R, Well P, Grant J, Salman NY (2002) Appl Catal A Gen 229:251

    Article  CAS  Google Scholar 

  36. Nozaki F, Adachi R (1975) J Catal 40:166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supports from the Natural Science Foundation of China (NSFC Nos. 20573108, 20773124, 20773122) and from the National Basic Research Program of China (2009CB226102) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, L., Zheng, M., Wang, A. et al. A Novel Route to the Preparation of Carbon Supported Nickel Phosphide Catalysts by a Microwave Heating Process. Catal Lett 135, 305–311 (2010). https://doi.org/10.1007/s10562-010-0280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0280-9

Keywords

Navigation