Log in

Hybrid Splitting Methods for the System of Operator Inclusions with Monotone Operators1

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

New algorithms are proposed to solve a system of operator inclusions with monotone operators acting in a Hilbert space. The algorithms are based on three well-known methods: the Tseng forward-backward splitting algorithm and two hybrid algorithms for approximation of fixed points of nonexpansive operators. Theorems on the strong convergence of the sequences generated by the algorithms are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North–Holland (1973).

  2. H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, Berlin–Heidelberg–New York (2011).

    Book  MATH  Google Scholar 

  3. J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires (Some Methods to Solve Nonlinear Boundary-Value Problems), Dunod, Paris (1969).

    Google Scholar 

  4. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York (1980).

    MATH  Google Scholar 

  5. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, Wiley (1984).

  6. A. Nagurney, Network Economics: A Variational Inequality Approach, Kluwer Acad. Publ., Dordrecht (1999).

    Book  Google Scholar 

  7. E. G. Gol’shtein and N. V. Tret’yakov, Modified Lagrangian Functions. Optimization Theory and Methods [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  8. I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer–Verlag, Berlin–Heidelberg–New York (2001).

    Book  MATH  Google Scholar 

  9. F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problem, 2, Springer, New York (2003).

    Google Scholar 

  10. V. V. Vasin and I. I. Eremin, Operator and Iterative Processes of Fejer Type (Theory and Applications) [in Russian], Regulyarn. i Khaotich. Dinamika, Moscow–Izhevsk (2005).

    Google Scholar 

  11. H. Brezis and P. L. Lions, Produits infinis de resolvantes, Israel J. Math., 29, 329–345 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu. V. Malitsky and V. V. Semenov, An extra-gradient algorithm for monotone variational inequalities, Cybern. Syst. Analysis, 50, No. 2, 271–277 (2014).

    Article  Google Scholar 

  13. P. Tseng, A modified forward–backward splitting method for maximal monotone map**s, SIAM J. Control Optim., 38, 431–446 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. **u and J. Zhang, Some recent advances in projection-type methods for variational inequalities, J. Comput. Appl. Math., 152, 559–585 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. M. Korpelevich, An extra-gradient method for finding saddle points and other problems, Ekon. Mat. Metody, 12, No. 4, 747–756 (1976).

    MathSciNet  MATH  Google Scholar 

  16. E. N. Khobotov, A modification of extra-gradient method to solve variational inequalities and some optimization problems, Zh. Vych. Mat. Mat. Fiz., 27, No. 10, 1462–1473 (1987).

    MathSciNet  Google Scholar 

  17. Yu. V. Malitsky and V. V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems, J. Global Optimiz., 1–10 (2014), DOI 10.1007/s10898–014–0150–x.

  18. T. A. Voitova and V. V. Semenov, A method to solve two-stage operator inclusions, Zhurn. Obchysl. Prykl. Mat., No. 3 (102), 34–39 (2010).

  19. Yu. V. Malitskii and V. V. Semenov, New theorems of strong convergence of the proximal method for an equilibrium programming problem, Zhurn. Obchysl. Prykl. Mat., No. 3 (102), 79–88 (2010).

  20. V. V. Semenov, On the parallel proximal decomposition method for solving the problems of convex optimization, J. Autom. Inform. Sci., 42, No. 4, 13–18 (2010).

    Article  Google Scholar 

  21. S. I. Lyashko, V. V. Semenov, and T. A. Voitova, Low-cost modification of Korpelevich’s methods for monotone equilibrium problems, Cybern. Syst. Analysis, 47, No. 4, 631–639 (2011).

    Article  MathSciNet  Google Scholar 

  22. S. V. Denisov and V. V. Semenov, A proximal algorithm for two-level variational inequalities: Strong convergence, Zhurn. Obchysl. Prykl. Matem., No. 3 (106), 27–32 (2011).

  23. V. V. Semenov, Parallel decomposition of variational inequalities with monotone operators, Zhurn. Obchysl. Prykl. Matem., No. 2 (108), 53–58 (2012).

  24. R. Ya. Apostol, A. A. Grinenko, and V. V. Semenov, Iterative algorithms for monotone two-level variational inequalities, Zhurn. Obchysl. Prykl. Matem., No. 1 (107), 3–14 (2012).

  25. L. C. Ceng and C. Y. Chou, On the relaxed hybrid–extragradient method for solving constrained convex minimization problems in Hilbert spaces, Taiwanese J. Math., 17, No. 3, 911–936 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  26. I. V. Konnov, Systems of variational inequalities, Izv. Vuzov., Matem., No. 12, 79–88 (1997).

  27. Y. Censor, A. Gibali, and S. Reich, A von Neumann alternating method for finding common solutions to variational inequalities, Nonlinear Analysis Series A: Theory, Methods & Applications, 75, 4596–4603 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Censor, A. Gibali, S. Reich, and S. Sabach, Common solutions to variational inequalities, Set-Valued and Variational Analysis, 20, 229–247 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Censor, A. Gibali, and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59, 301–323 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  30. H. K. Xu, Viscosity approximation methods for nonexpansive map**s, J. Math. Anal. Appl., 298, 279–291 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  31. Nguyen Buong and Dang Thi Hai Ha, Tikhonov regularization method for a system of equilibrium problems in Banach spaces, Ukr. Math. J., 61, No. 8, 1302–1310 (2009).

    Article  Google Scholar 

  32. V. V. Semenov, Strongly convergent algorithms for variational inequality problem over the set of solutions the equilibrium problems, in: M. Z. Zgurovsky and V. A. Sadovnichiy (eds.), Continuous and Distributed Systems, Solid Mechanics and Its Applications, 211, Springer Intern. Publ. (Switzerland), Heidelberg–New York–Dordrecht–London (2014), pp. 131–146.

  33. P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6, 117–136 (2005).

    MathSciNet  MATH  Google Scholar 

  34. P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, 53, 475–504 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive map**s and nonexpansive semigroups, J. Math. Anal. Appl., 279, 372–379 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive map**s and Lipschitz-continuous monotone map**s, SIAM J. Optim., 16, No. 4, 1230–1241 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Takahashi, Y. Takeuchi, and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive map**s in Hilbert spaces, J. Math. Anal. Appl., 341, 276–286 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  38. T. A. Voitova, S. V. Denisov, and V. V. Semenov, A strongly convergent modified version of the Korpelevich method for equilibrium programming problems, Zhurn. Obch. Prykl. Matem., No. 1 (104), 10–23 (2011).

  39. V. V. Semenov, A basic scheme of the calculation of generalized projection, Dop. NANU, No. 6, 41–46 (2013).

  40. Yu. V. Malitskii and V. V. Semenov, A scheme of external approximations for variational inequalities on the set of fixed points of Fejer operators, Dop. NANU, No. 7, 47–52 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Semenov.

Additional information

1The study was sponsored by the Verkhovna Rada of Ukraine (the scholarship of the Verkhovna Rada of Ukraine for Young Scientists, 2013) and The State Fund for Fundamental Researches of Ukraine (Project GP/F49/061).

Translated from Kibernetika i Sistemnyi Analiz, No. 5, September–October, 2014, pp. 104–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.V. Hybrid Splitting Methods for the System of Operator Inclusions with Monotone Operators1 . Cybern Syst Anal 50, 741–749 (2014). https://doi.org/10.1007/s10559-014-9664-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-014-9664-y

Keywords

Navigation