Log in

Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Apoptotic caspases have long been studied for their roles in programmed cell death and tumor suppression. With recent discoveries, however, it is becoming apparent these cell death executioners are involved in additional biological pathways beyond killing cells. In some cases, apoptotic cells secrete growth signals to stimulate proliferation of neighboring cells. This pathway functions to regenerate tissues in multiple organisms, but it also poses problems in tumor resistance to chemo- and radiotherapy. Additionally, it was found that activation of caspases does not irreversibly lead to cell death, contrary to the established paradigm. Sub-lethal activation of caspases is evident in cell differentiation and epigenetic reprogramming. Furthermore, evidence indicates spontaneous, unprovoked activation of caspases in many cancer cells, which plays pivotal roles in maintaining their tumorigenicity and metastasis. These unexpected findings challenge current cancer therapy approaches aimed at activation of the apoptotic pathway. At the same time, the newly discovered functions of caspases suggest new treatment approaches for cancer and other pathological conditions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riedl, S. J., & Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nature Reviews. Molecular Cell Biology, 5.11, 897–907.

    Article  CAS  Google Scholar 

  2. Zou, H., et al. (1999). An Apaf-1. Cytochrome C multimeric complex is a functional apoptosome that activates procaspase-9. The Journal of Biological Chemistry, 274.17, 11549–11556.

    Article  Google Scholar 

  3. Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes & Development, 15.22, 2922–2933.

    Google Scholar 

  4. Nagata, S. (1999). Fas ligand-induced apoptosis. Annual Review of Genetics, 33, 29–55.

    Article  PubMed  CAS  Google Scholar 

  5. Peter, M. E., & Krammer, P. H. (2003). The Cd95(Apo-1/Fas) disc and beyond. Cell Death and Differentiation, 10.1, 26–35.

    Article  CAS  Google Scholar 

  6. Horvitz, H. R. (2003). Nobel lecture. Worms, life and death. Bioscience Reports, 23.-65, 239–303.

    Article  Google Scholar 

  7. Lee, C. Y., Cooksey, B. A., & Baehrecke, E. H. (2002). Steroid regulation of midgut cell death during Drosophila development. Developmental Biology, 250.1, 101–111.

    Article  CAS  Google Scholar 

  8. Pyati, U. J., et al. (2006). Sustained bmp signaling is essential for cloaca development in zebrafish. Development, 133.11, 2275–2284.

    Article  CAS  Google Scholar 

  9. Magnus, T., et al. (2002). Astrocytes are less efficient in the removal of apoptotic lymphocytes than microglia cells: implications for the role of glial cells in the inflamed central nervous system. Journal of Neuropathology and Experimental Neurology, 61.9, 760–766.

    Article  Google Scholar 

  10. Shklover, J., Levy-Adam, F., & Kurant, E. (2015). Apoptotic cell clearance in development. Current Topics in Developmental Biology, 114, 297–334.

    Article  PubMed  Google Scholar 

  11. Arama, E., Agapite, J., & Steller, H. (2003). Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Developmental Cell, 4, 687–697.

    Article  PubMed  CAS  Google Scholar 

  12. Arama, E., Bader, M., Rieckhof, G. E., & Steller, H. (2007). A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila. PLoS Biology, 5, e251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Baum, J. S., Arama, E., Steller, H., & McCall, K. (2007). The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death and Differentiation, 14, 1508–1517.

    Article  PubMed  CAS  Google Scholar 

  14. Bergmann, A., Agapite, J., & Steller, H. (1998). Mechanisms and control of programmed cell death in invertebrates. Oncogene, 17, 3215–3223.

    Article  PubMed  Google Scholar 

  15. Mccall, K., & Steller, H. (1998). Requirement for DCP-1 caspase during Drosophila oogenesis. Science, 279, 230–234.

    Article  PubMed  CAS  Google Scholar 

  16. Zakeri, Z., et al. (2015). What cell death does in development. The International Journal of Developmental Biology, 59.1-3, 11–22.

    Article  CAS  Google Scholar 

  17. DYCHE, W. J. (1979). A comparative study of the differentiation and involution of the Mullerian duct and Wolffian duct in the male and female fetal mouse. Journal of Morphology, 162, 175–209.

    Article  PubMed  CAS  Google Scholar 

  18. Teixeira, J., Maheswaran, S., & Donahoe, P. K. (2001). Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocrine Reviews, 22, 657–674.

    PubMed  CAS  Google Scholar 

  19. Mammano, F., & Bortolozzi, M. (2018). Ca (2+) signaling, apoptosis and autophagy in the develo** cochlea: milestones to hearing acquisition. Cell Calcium, 70, 117–126.

    Article  PubMed  CAS  Google Scholar 

  20. Zuzarte-Luis, V., & Hurle, J. M. (2002). Programmed cell death in the develo** limb. The International Journal of Developmental Biology, 46.7, 871–876.

    Google Scholar 

  21. Iversen, O. H. (1996). Cell death in vivo: terminal maturation, necrosis and apoptosis. East African Medical Journal, 73.5(Suppl), S5–S6.

    Google Scholar 

  22. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144.5, 646–674.

    Article  CAS  Google Scholar 

  23. Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1997). Genetic instability in colorectal cancers. Nature, 386, 623–627.

    Article  PubMed  CAS  Google Scholar 

  24. Guenette, S. Y., & Tanzi, R. E. (1999). Progress toward valid transgenic mouse models for Alzheimer’s disease. Neurobiology of Aging, 20.2, 201–211.

    Article  Google Scholar 

  25. Sathasivam, K., et al. (1999). Transgenic models of Huntington’s disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354.1386, 963–969.

    Article  Google Scholar 

  26. Borchelt, D. R., et al. (1998). Transgenic mouse models of Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Pathology, 8.4, 735–757.

    Article  Google Scholar 

  27. Wang, J., et al. (1999). Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type Ii. Cell, 98.1, 47–58.

    Article  Google Scholar 

  28. Furlan, R., et al. (1999). Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. Journal of Immunology, 163.5, 2403–2409.

    Google Scholar 

  29. Liadis, N., et al. (2005). Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Molecular and Cellular Biology, 25.9, 3620–3629.

    Article  CAS  Google Scholar 

  30. Taghiyev, A. F., Rokhlin, O. W., & Glover, R. B. (2011). Caspase-2-based regulation of the androgen receptor and cell cycle in the prostate cancer cell line Lncap. Genes & Cancer, 2.7, 745–752.

    Article  CAS  Google Scholar 

  31. Mathiasen, I. S., Lademann, U., & Jaattela, M. (1999). Apoptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or P53. Cancer Research, 59.19, 4848–4856.

    Google Scholar 

  32. King, D., et al. (1998). Processing/activation of caspases, -3 and -7 and -8 but not caspase-2, in the induction of apoptosis in B-chronic lymphocytic leukemia cells. Leukemia, 12.10, 1553–1560.

    Article  CAS  Google Scholar 

  33. Ozaki, T., & Nakagawara, A. (2011). Role of P53 in cell death and human cancers. Cancers (Basel), 3.1, 994–1013.

    Article  CAS  Google Scholar 

  34. Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30, 87.

    Article  CAS  Google Scholar 

  35. de Almagro, M. C., & Vucic, D. (2012). The inhibitor of apoptosis (Iap) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Experimental Oncology, 34.3, 200–211.

    Google Scholar 

  36. Montero, J., & Letai, A. (2018). Why do Bcl-2 inhibitors work and where should we use them in the clinic? Cell Death and Differentiation, 25.1, 56–64.

    Article  CAS  Google Scholar 

  37. Deeks, E. D. (2016). Venetoclax: first global approval. Drugs, 76.9, 979–987.

    Article  CAS  Google Scholar 

  38. Del Gaizo Moore, V., et al. (2007). Chronic lymphocytic leukemia requires Bcl2 to sequester Prodeath Bim, explaining sensitivity to Bcl2 antagonist Abt-737. The Journal of Clinical Investigation, 117.1, 112–121.

    Article  CAS  Google Scholar 

  39. Davids, M. S., et al. (2012). Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. Blood, 120.17, 3501–3509.

    Article  CAS  Google Scholar 

  40. Li, F., et al. (2010). Apoptotic cells activate the “Phoenix rising” pathway to promote wound healing and tissue regeneration. Science Signaling, 3.110, ra13.

    Google Scholar 

  41. Wells, B. S., Yoshida, E., & Johnston, L. A. (2006). Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent P53 activity. Current Biology, 16.16, 1606–1615.

    Article  CAS  Google Scholar 

  42. Tseng, A. S., et al. (2007). Apoptosis is required during early stages of tail regeneration in Xenopus Laevis. Developmental Biology, 301.1, 62–69.

    Article  CAS  Google Scholar 

  43. Hwang, J. S., Kobayashi, C., Agata, K., Ikeo, K., & Gojobori, T. (2004). Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and Tunel assay. Gene, 333, 15–25.

    Article  PubMed  CAS  Google Scholar 

  44. Chera, S., et al. (2009). Apoptotic cells provide an unexpected source of Wnt3 signaling to drive Hydra head regeneration. Developmental Cell, 17.2, 279–289.

    Article  CAS  Google Scholar 

  45. Huang, Q., et al. (2011). Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nature Medicine, 17.7, 860–866.

    Article  CAS  Google Scholar 

  46. Feng, X., Yu, Y., He, S., Cheng, J., Gong, Y., Zhang, Z., Yang, X., Xu, B., Liu, X., Li, C. Y., Tian, L., & Huang, Q. (2017). Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Letters, 385, 12–20.

    Article  PubMed  CAS  Google Scholar 

  47. Feng, X., et al. (2015). Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis. Oncotarget, 6.32, 32353–32367.

    Google Scholar 

  48. Kurtova, A. V., et al. (2015). Blocking Pge2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature, 517.7533, 209–213.

    Article  CAS  Google Scholar 

  49. Yu, D. D., et al. (2015). Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Science, 106.8, 959–964.

    Article  CAS  Google Scholar 

  50. Bergsmedh, A., et al. (2001). Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proceedings of the National Academy of Sciences of the United States of America, 98.11, 6407–6411.

    Article  Google Scholar 

  51. Lynch, C., Panagopoulou, M., & Gregory, C. D. (2017). Extracellular vesicles arising from apoptotic cells in tumors: roles in cancer pathogenesis and potential clinical applications. Frontiers in Immunology, 8, 1174.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yang, X., et al. (2018). Caspase-3 over-expression is associated with poor overall survival and clinicopathological parameters in breast cancer: a meta-analysis of 3091 cases. Oncotarget, 9.9, 8629–8641.

    Google Scholar 

  53. Zhou, M., et al. (2018). Caspase-3 regulates the migration, invasion, and metastasis of colon cancer cells. International Journal of Cancer, https://doi.org/10.1002/ijc.31374. [Epub ahead of print].

  54. Rudrapatna, V. A., Bangi, E., & Cagan, R. L. (2013). Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Reports, 14.2, 172–177.

    Article  CAS  Google Scholar 

  55. Torres, V. A., et al. (2010). Rab5 mediates caspase-8-promoted cell motility and metastasis. Molecular Biology of the Cell, 21.2, 369–376.

    Article  Google Scholar 

  56. Barbero, S., et al. (2009). Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Research, 69.9, 3755–3763.

    Article  CAS  Google Scholar 

  57. Helfer, B., et al. (2006). Caspase-8 promotes cell motility and Calpain activity under nonapoptotic conditions. Cancer Research, 66.8, 4273–4278.

    Article  Google Scholar 

  58. Senft, J., Helfer, B., & Frisch, S. M. (2007). Caspase-8 interacts with the P85 subunit of phosphatidylinositol 3-kinase to regulate cell adhesion and motility. Cancer Research, 67.24, 11505–11509.

    Article  Google Scholar 

  59. Gdynia, G., et al. (2007). Basal caspase activity promotes migration and invasiveness in glioblastoma cells. Molecular Cancer Research, 5.12, 1232–1240.

    Article  CAS  Google Scholar 

  60. Liao, Y., et al. (2015). The impact of caspase-8 on non-small cell lung cancer brain metastasis in Ii/Iii stage patient. Neoplasma. https://doi.org/10.4149/neo_2125_043.

  61. Tang, H. L., et al. (2012). Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Molecular Biology of the Cell, 23.12, 2240–2252.

    Article  Google Scholar 

  62. Green, D. R., & Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305.5684, 626–629.

    Article  CAS  Google Scholar 

  63. Taylor, R. C., Cullen, S. P., & Martin, S. J. (2008). Apoptosis: controlled demolition at the cellular level. Nature Reviews. Molecular Cell Biology, 9.3, 231–241.

    Article  CAS  Google Scholar 

  64. Chipuk, J. E., et al. (2010). The Bcl-2 family reunion. Molecular Cell, 37.3, 299–310.

    Article  CAS  Google Scholar 

  65. Ding, A. X., et al. (2016). Casexpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. Elife, 5. pii: e10936. https://doi.org/10.7554/elife.10936.

  66. Ashkenazi, A., Holland, P., & Eckhardt, S. G. (2008). Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/tumor necrosis factor-related apoptosis-inducing ligand (Rhapo2l/Trail). Journal of Clinical Oncology, 26.21, 3621–3630.

    Article  CAS  Google Scholar 

  67. Lovric, M. M., & Hawkins, C. J. (2010). Trail treatment provokes mutations in surviving cells. Oncogene, 29.36, 5048–5060.

    Article  CAS  Google Scholar 

  68. Orth, J. D., et al. (2012). Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and P53 induction. Molecular Biology of the Cell, 23.4, 567–576.

    Article  Google Scholar 

  69. Sordet, O., et al. (2002). Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood, 100.13, 4446–4453.

    Article  CAS  Google Scholar 

  70. Varfolomeev, E. E., et al. (1998). Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the Tnf receptors, Fas/Apo1, and Dr3 and is lethal prenatally. Immunity, 9.2, 267–276.

    Article  Google Scholar 

  71. Rendl, M., et al. (2002). Caspase-14 expression by epidermal keratinocytes is regulated by Retinoids in a differentiation-associated manner. The Journal of Investigative Dermatology, 119.5, 1150–1155.

    Article  Google Scholar 

  72. Eckhart, L., et al. (2000). Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. The Journal of Investigative Dermatology, 115.6, 1148–1151.

    Article  Google Scholar 

  73. Fujita, J., et al. (2008). Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell, 2.6, 595–601.

    Article  CAS  Google Scholar 

  74. Silva, J., et al. (2006). Nanog promotes transfer of pluripotency after cell fusion. Nature, 441.7096, 997–1001.

    Article  CAS  Google Scholar 

  75. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 4487151, 313–317.

    Article  CAS  Google Scholar 

  76. Dejosez, M., et al. (2008). Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell, 133.7, 1162–1174.

    Article  CAS  Google Scholar 

  77. Kang, T. B., et al. (2004). Caspase-8 serves both apoptotic and nonapoptotic roles. Journal of Immunology, 173.5, 2976–2984.

    Article  Google Scholar 

  78. Szymczyk, K. H., et al. (2006). Active caspase-3 is required for osteoclast differentiation. Journal of Cellular Physiology, 209.3, 836–844.

    Article  CAS  Google Scholar 

  79. Li, F., et al. (2010). Apoptotic caspases regulate induction of iPSCs from human fibroblasts. Cell Stem Cell, 7.4, 508–520.

    Article  CAS  Google Scholar 

  80. Li, Z. (2013). Cd133: a stem cell biomarker and beyond. Experimental Hematology & Oncology, 2.1, 17.

    Article  CAS  Google Scholar 

  81. Kim, J., Jeon, H., & Kim, H. (2015). The molecular mechanisms underlying the therapeutic resistance of cancer stem cells. Archives of Pharmacal Research, 38(3), 389–401.

    Article  PubMed  CAS  Google Scholar 

  82. Karamboulas, C., & Ailles, L. (2013). Developmental signaling pathways in cancer stem cells of solid tumors. Biochimica et Biophysica Acta, 1830(2), 2481–2495.

    Article  PubMed  CAS  Google Scholar 

  83. Hernandez-Vargas, H., Ouzounova, M., Le Calvez-Kelm, F., et al. (2011). Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. Epigenetics, 6(4), 428–439.

    Article  PubMed  CAS  Google Scholar 

  84. Watabe, T., & Miyazono, K. (2009). Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Research, 19(1), 103–115.

    Article  PubMed  CAS  Google Scholar 

  85. Mo, J., Park, H., & Guan, K. (2014). The hippo signaling pathway in stem cell biology and cancer. EMBO Reports, 15(6), 642–656.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Norton, K. A., & Popel, A. S. (2014). An agent-based model of cancer stem cell initiated avascular tumour growth and metastasis: the effect of seeding frequency and location. Journal of the Royal Society, Interface, 11.100, 20140640.

    Article  Google Scholar 

  87. Ma, R., et al. (2014). Stemness in human thyroid cancers and derived cell lines: the role of asymmetrically dividing cancer stem cells resistant to chemotherapy. The Journal of Clinical Endocrinology and Metabolism, 99.3, E400–E409.

    Article  CAS  Google Scholar 

  88. Morrison, R., et al. (2011). Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. Journal of Oncology, (2011), 941876.

  89. Smit, J. K., et al. (2013). Prediction of response to radiotherapy in the treatment of esophageal cancer using stem cell markers. Radiotherapy and Oncology, 107.3, 434–441.

    Article  Google Scholar 

  90. Liu, X., Li, F., Huang, Q., Zhang, Z., Zhou, L., Deng, Y., Zhou, M., Fleenor, D. E., Wang, H., Kastan, M. B., & Li, C. Y. (2017). Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Research, 27, 764–783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Stagni, V., Manni, I., Oropallo, V., Mottolese, M., di Benedetto, A., Piaggio, G., Falcioni, R., Giaccari, D., di Carlo, S., Sperati, F., Cencioni, M. T., & Barilà, D. (2015). Atm kinase sustains Her2 tumorigenicity in breast cancer. Nature Communications, 6, 6886.

    Article  PubMed  CAS  Google Scholar 

  92. Arnoult, D., et al. (2003). Mitochondrial release of Aif and Endog requires caspase activation downstream of Bax/Bak-mediated permeabilization. The EMBO Journal, 22.17, 4385–4399.

    Article  Google Scholar 

  93. Uegaki, K., et al. (2000). Structure of the Cad domain of caspase-activated Dnase and interaction with the Cad domain of its inhibitor. Journal of Molecular Biology, 297.5, 1121–1128.

    Article  CAS  Google Scholar 

  94. Coppe, J. P., et al. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Biswas, S., et al. (2013). The loss of the Bh3-only Bcl-2 family member bid delays T-cell leukemogenesis in Atm−/− mice. Cell Death and Differentiation, 20.7, 869–877.

    Article  CAS  Google Scholar 

  96. Labi, V., et al. (2010). Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes & Development, 24.15, 1602–1607.

    Article  CAS  Google Scholar 

  97. Michalak, E. M., et al. (2010). Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes & Development, 24.15, 1608–1613.

    Article  CAS  Google Scholar 

  98. Ichim, G., & Tait, S. W. (2016). A fate worse than death: apoptosis as an oncogenic process. Nature Reviews. Cancer, 16.8, 539–548.

    Article  CAS  Google Scholar 

  99. Tait, S. W., & Green, D. R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews. Molecular Cell Biology, 11.9, 621–632.

    Article  CAS  Google Scholar 

  100. Ichim, G., et al. (2015). Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Molecular Cell, 57.5, 860–872.

    Article  CAS  Google Scholar 

  101. Liu, X., et al. (2015). Caspase-3 promotes genetic instability and carcinogenesis. Molecular Cell, 58.2, 284–296.

    Article  CAS  Google Scholar 

  102. Cifone, M. A., & Fidler, I. J. (1980). Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 77.2, 1039–1043.

    Article  Google Scholar 

  103. Cartwright, I. M., et al. (2017). Essential roles of caspase-3 in facilitating Myc-induced genetic instability and carcinogenesis. Elife, 6 pii:e26371. https://doi.org/10.7554/eLife.26731.

  104. Flanagan, L., Meyer, M., Fay, J., Curry, S., Bacon, O., Duessmann, H., John, K., Boland, K. C., McNamara, D. A., Kay, E. W., Bantel, H., Schulze-Bergkamen, H., & Prehn, J. H. M. (2016). Low levels of caspase-3 predict favourable response to 5fu-based chemotherapy in advanced colorectal cancer: caspase-3 inhibition as a therapeutic approach. Cell Death & Disease, 7, e2087.

    Article  CAS  Google Scholar 

Download references

Funding

The study is supported in part by grants ES024015, CA208852, and CA216876 from the US National Institutes of Health (to C-Y. Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Kaakati, R., Lee, A.K. et al. Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond. Cancer Metastasis Rev 37, 227–236 (2018). https://doi.org/10.1007/s10555-018-9736-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-018-9736-y

Keywords

Navigation