Log in

Endocardial and epicardial myocardial perfusion determined by semi-quantitative and quantitative myocardial perfusion magnetic resonance

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

This study aims to quantify subendocardial and subepicardial myocardial blood flow (MBF) from dynamic contrast-enhanced MRI and to compare semi-quantitative and quantitative analysis methods. 17 healthy volunteers (9 males, mean age 34 ± 8) were scanned during adenosine stress and at rest. A “semi-quantitative” myocardial perfusion index (MPI) was calculated based on maximal upslopes of signal intensity-time profiles for a mid-ventricular myocardial slice. In addition, absolute MBF (ml/g/min) was estimated using Fermi-constrained deconvolution. On semi-quantitative analysis, the ratio of subendocardial to subepicardial MPI was 0.98 ± 0.1 at stress and 1.16 ± 0.09 at rest, P < 0.0001. The MPRI (i.e. the ratio of stress over rest MPI) for the subendocardium was 1.54 ± 0.3 versus 1.81 ± 0.35 for the subepicardium, P = 0.03. For quantitative analysis, the ratio of subendocardial to subepicardial MBF was 0.91 ± 0.11 at stress versus 1.17 ± 0.16 at rest, P < 0.0001. The subendocardial MBF reserve was also lower than in the subepicardium (2.6 ± 0.75 vs. 3.32 ± 0.93, P = 0.027). In conclusion, semi-quantitative and quantitative analysis of dynamic contrast-enhanced MRI shows higher subendocardial blood flow at rest and reduced subendocardial perfusion reserve compared to the subepicardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CMR:

Cardiovascular magnetic resonance

EF:

Ejection fraction

MBF:

Myocardial blood flow

MPRI:

Myocardial perfusion reserve index

MPI:

Myocardial perfusion index

BP:

Blood pressure

LV-EDV:

Left ventricular end-diastolic volume

LV-ESV:

Left ventricular end-systolic volume

SI:

Signal intensity

ROI:

Region of interest

References

  1. Ball RM, Bache RJ, Cobb FR, Greenfield JC Jr (1975) Regional myocardial blood flow during graded treadmill exercise in the dog. J Clin Invest 55(1):43–49

    Article  PubMed  CAS  Google Scholar 

  2. Lee DC, Simonetti OP, Harris KR, Holly TA, Judd RM, Wu E, Klocke FJ (2004) Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 110(1):58–65

    Article  PubMed  Google Scholar 

  3. Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE (2004) Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 232(3):677–684

    Article  PubMed  Google Scholar 

  4. Muehling OM, Jerosch-Herold M, Panse P, Zenovich A, Wilson BV, Wilson RF, Wilke N (2004) Regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment with magnetic resonance perfusion imaging. J Cardiovasc Magn Reson 6(2):499–507

    Article  PubMed  Google Scholar 

  5. Panting JR, Gatehouse PD, Yang G-Z, Grothues F, Firmin DN, Collins P, Pennell DJ (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346(25):1948–1953

    Article  PubMed  Google Scholar 

  6. Vermeltfoort IA, Bondarenko O, Raijmakers PG, Odekerken DA, Kuijper AF, Zwijnenburg A, van der Vis-Melsen MJ, Twisk JW, Beek AM, Teule GJ, van Rossum AC (2007) Is subendocardial ischaemia present in patients with chest pain and normal coronary angiograms? A cardiovascular MR study. Eur Heart J 28(13):1554–1558

    Article  PubMed  Google Scholar 

  7. Radjenovic A, Biglands JD, Larghat A, Ridgway JP, Ball SG, Greenwood JP, Jerosch-Herold M, Plein S (2010) Estimates of systolic and diastolic myocardial blood flow by dynamic contrast-enhanced MRI. Magn Reson Med 64(6):1696–1703

    Article  PubMed  Google Scholar 

  8. Alfakih K, Reid S, Jones T, Sivananthan M (2004) Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol 14(10):1813–1822

    Article  PubMed  Google Scholar 

  9. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  10. Jerosch-Herold M, Wilke N, Stillman A (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25(1):73–84

    Article  PubMed  CAS  Google Scholar 

  11. Larsson HBW, FritzHansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O (1996) Myocardial perfusion modeling using MRI. Magn Reson Med 35(5):716–726

    Article  PubMed  CAS  Google Scholar 

  12. Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HBW (2008) Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging 27(4):818–824

    Article  PubMed  Google Scholar 

  13. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40(11):715–724

    Article  PubMed  Google Scholar 

  14. Fritsch FN, Carlson RE (1980) Monotone piecewise cubic interpolation. SIAM J Numer Anal 17(2):238–246

    Article  Google Scholar 

  15. Cheong LH, Koh TS, Hou Z (2003) An automatic approach for estimating bolus arrival time in dynamic contrast MRI using piecewise continuous regression models. Phys Med Biol 48(5):N83–N88

    Article  PubMed  CAS  Google Scholar 

  16. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88(3):1009–1086

    Article  PubMed  CAS  Google Scholar 

  17. Duncker DJ, Ishibashi Y, Bache RJ (1998) Effect of treadmill exercise on transmural distribution of blood flow in hypertrophied left ventricle. Am J Physiol 275(4 Pt 2):H1274–H1282

    PubMed  CAS  Google Scholar 

  18. Duncker DJ, Traverse JH, Ishibashi Y, Bache RJ (1999) Effect of NO on transmural distribution of blood flow in hypertrophied left ventricle during exercise. Am J Physiol 276(4 Pt 2):H1305–H1312

    PubMed  CAS  Google Scholar 

  19. Parks CM, Manohar M (1983) Transmural coronary vasodilator reserve and flow distribution during severe exercise in ponies. J Appl Physiol 54(6):1641–1652

    PubMed  CAS  Google Scholar 

  20. Knaapen P, Germans T, Camici PG, Rimoldi OE, ten Cate FJ, ten Berg JM, Dijkmans PA, Boellaard R, van Dockum WG, Gotte MJW, Twisk JWR, van Rossum AC, Lammertsma AA, Visser FC (2008) Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 294(2):H986–H993

    Article  PubMed  CAS  Google Scholar 

  21. Kawecka-Jaszcz K, Czarnecka D, Olszanecka A, Klecha A, Kwiecien-Sobstel A, Stolarz-Skrzypek K, Pennell DJ, Pasowicz M, Klimeczek P, Banys RP (2008) Myocardial perfusion in hypertensive patients with normal coronary angiograms. J Hypertens 26(8):1686–1694

    Article  PubMed  CAS  Google Scholar 

  22. Deussen A, Lauer T, Loncar R, Kropp J (2001) Heterogeneity of metabolic parameters in the left ventricular myocardium and its relation to local blood flow. Basic Res Cardiol 96(6):564–574

    Article  PubMed  CAS  Google Scholar 

  23. Zwanenburg JJ, Gotte MJ, Kuijer JP, Hofman MB, Knaapen P, Heethaar RM, van Rossum AC, Marcus JT (2005) Regional timing of myocardial shortening is related to prestretch from atrial contraction: assessment by high temporal resolution MRI tagging in humans. Am J Physiol Heart Circ Physiol 288(2):H787–H794

    Article  PubMed  CAS  Google Scholar 

  24. Gebker R, Schwitter J, Fleck E, Nagel E (2007) How we perform myocardial perfusion with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9(3):539–547

    Article  PubMed  Google Scholar 

  25. Kellman P, Arai AE (2007) Imaging sequences for first pass perfusion–a review. J Cardiovasc Magn Reson 9(3):525–537

    Article  PubMed  Google Scholar 

  26. Gerber BL, Raman SV, Nayak K, Epstein FH, Ferreira P, Axel L, Kraitchman DL (2008) Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J Cardiovasc Magn Reson 10(1):18

    Article  PubMed  Google Scholar 

  27. Schwitter J (2006) Myocardial perfusion. J Magn Reson Imaging 24:953–963

    Article  PubMed  Google Scholar 

  28. Biglands JD, Larghat A, Plein S, Buckley DL, Jerosch-Herold M, Magee D, Boyle R, Radjenovic A (2010) Saturation correction of dynamic contrast enhanced MRI uptake curves for quantitative myocardial blood flow measurements using an assumed T1 for blood. Proc Intl Soc Magn Reson Med 19

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Plein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larghat, A., Biglands, J., Maredia, N. et al. Endocardial and epicardial myocardial perfusion determined by semi-quantitative and quantitative myocardial perfusion magnetic resonance. Int J Cardiovasc Imaging 28, 1499–1511 (2012). https://doi.org/10.1007/s10554-011-9982-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9982-3

Keywords

Navigation