Log in

Physical activity and mammographic density in an Asian multi-ethnic cohort

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Background

Physical activity is a modifiable lifestyle factor associated with reduced breast cancer risk. Mammographic density is a strong, independent risk factor for breast cancer, and some breast cancer risk factors have been shown to modify mammographic density. However, the effect of physical activity on mammographic density, studied predominantly among Caucasians, has yielded conflicting results. In this study, we examined, in an Asian population, the association between physical activity and mammographic density.

Methods

We conducted a cross-sectional study of 2,377 Malaysian women aged 40–74 years. Physical activity information was obtained at screening mammogram and mammographic density was measured from mammograms by the area-based STRATUS method (n = 1,522) and the volumetric Volpara™ (n = 1,200) method. Linear regression analyses were performed to evaluate the association between physical activity and mammographic density, adjusting for potential confounders.

Results

We observed that recent physical activity was associated with area-based mammographic density measures among postmenopausal women, but not premenopausal women. In the fully adjusted model, postmenopausal women with the highest level of recent physical activity had 8.0 cm2 [95% confidence interval: 1.3, 14.3 cm2] lower non-dense area and 3.1% [0.1, 6.3%] higher area-based percent density, compared to women with the lowest level of recent physical activity. Physical activity was not associated to volumetric mammographic density.

Conclusions

Our findings suggest that the beneficial effects of physical activity on breast cancer risk may not be measurable through mammographic density. Future research is needed to identify appropriate biomarkers to assess the effect of physical activity on breast cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Research WCRFAIfC (2010) Continuous update project report. Food, nutrition, physical activity, and the prevention of breast cancer

  2. Monninkhof EM, Elias SG, Vlems FA et al (2007) Physical activity and breast cancer: a systematic review. Epidemiology 18(1):137–157. https://doi.org/10.1097/01.ede.0000251167.75581.98

    Article  PubMed  Google Scholar 

  3. Lynch BM, Neilson HK, Friedenreich CM (2011) Physical activity and breast cancer prevention. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer 186:13–42. https://doi.org/10.1007/978-3-642-04231-7_2

    Article  PubMed  Google Scholar 

  4. Wu Y, Zhang D, Kang S (2013) Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 137(3):869–882. https://doi.org/10.1007/s10549-012-2396-7

    Article  PubMed  Google Scholar 

  5. Goncalves AK, Dantas Florencio GL, Maisonnette de Atayde Silva MJ et al (2014) Effects of physical activity on breast cancer prevention: a systematic review. J Phys Act Health 11(2):445–454. https://doi.org/10.1123/jpah.2011-0316

    Article  PubMed  Google Scholar 

  6. Liu L, Shi Y, Li T et al (2016) Leisure time physical activity and cancer risk: evaluation of the WHO’s recommendation based on 126 high-quality epidemiological studies. British J Sports Med 50(6):372–378. https://doi.org/10.1136/bjsports-2015-094728

    Article  Google Scholar 

  7. Kyu HH, Bachman VF, Alexander LT et al (2016) Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 354:i3857. https://doi.org/10.1136/bmj.i3857

    Article  PubMed  PubMed Central  Google Scholar 

  8. Neilson HK, Farris MS, Stone CR et al (2017) Moderate-vigorous recreational physical activity and breast cancer risk, stratified by menopause status: a systematic review and meta-analysis. Menopause 24(3):322–344. https://doi.org/10.1097/gme.0000000000000745

    Article  PubMed  Google Scholar 

  9. Pettersson A, Hankinson SE, Willett WC et al (2011) Nondense mammographic area and risk of breast cancer. Breast Cancer Res 13(5):R100. https://doi.org/10.1186/bcr3041

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aitken Z, McCormack VA, Highnam RP et al (2010) Screen-film mammographic density and breast cancer risk: a comparison of the volumetric standard mammogram form and the interactive threshold measurement methods. Cancer Epidemiol Biomark Prev 19(2):418–428. https://doi.org/10.1158/1055-9965.EPI-09-1059

    Article  Google Scholar 

  11. Stone J, Ding J, Warren RM et al (2010) Using mammographic density to predict breast cancer risk: dense area or percentage dense area. Breast Cancer Res 12(6):R97. https://doi.org/10.1186/bcr2778

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ursin G, Ma H, Wu AH et al (2003) Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomark Prev 12(4):332–338

    Google Scholar 

  13. Maskarinec G, Pagano I, Lurie G et al (2005) Mammographic density and breast cancer risk: the multiethnic cohort study. American J Epidemiol 162(8):743–752. https://doi.org/10.1093/aje/kwi270

    Article  Google Scholar 

  14. Boyd N, Martin L, Gunasekara A et al (2009) Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer Epidemiol Biomark Prev 18(6):1754–1762. https://doi.org/10.1158/1055-9965.epi-09-0107

    Article  Google Scholar 

  15. Vachon CM, Brandt KR, Ghosh K et al (2007) Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomark Prev 16(1):43–49. https://doi.org/10.1158/1055-9965.epi-06-0738

    Article  Google Scholar 

  16. Tamimi RM, Byrne C, Colditz GA et al (2007) Endogenous hormone levels, mammographic density, and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 99(15):1178–1187. https://doi.org/10.1093/jnci/djm062

    Article  PubMed  CAS  Google Scholar 

  17. Boyd NF, Byng JW, Jong RA et al (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian national breast screening study. J Natl Cancer Inst 87(9):670–675

    Article  PubMed  CAS  Google Scholar 

  18. Byrne C, Schairer C, Wolfe J et al (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87(21):1622–1629

    Article  PubMed  CAS  Google Scholar 

  19. Butler LM, Gold EB, Greendale GA et al (2008) Menstrual and reproductive factors in relation to mammographic density: the Study of Women’s Health Across the Nation (SWAN). Breast Cancer Res Treat 112(1):165–174. https://doi.org/10.1007/s10549-007-9840-0

    Article  PubMed  Google Scholar 

  20. Lienart V, Carly B, Kang X et al (2014) Effect of preventive hormonal therapy on breast density: a systematic qualitative review. Sci World J 2014:942386. https://doi.org/10.1155/2014/942386

    Article  Google Scholar 

  21. Rutter CM, Mandelson MT, Laya MB et al (2001) Changes in breast density associated with initiation, discontinuation, and continuing use of hormone replacement therapy. JAMA 285(2):171–176

    Article  PubMed  CAS  Google Scholar 

  22. Hooper L, Madhavan G, Tice JA et al (2010) Effects of isoflavones on breast density in pre- and post-menopausal women: a systematic review and meta-analysis of randomized controlled trials. Human Reprod Update 16(6):745–760. https://doi.org/10.1093/humupd/dmq011

    Article  CAS  Google Scholar 

  23. Samavat H, Ursin G, Emory TH et al (2017) A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer. Cancer Prev Res 10(12):710–718. https://doi.org/10.1158/1940-6207.capr-17-0187

    Article  CAS  Google Scholar 

  24. Ziembicki S, Zhu J, Tse E et al (2017) The association between alcohol consumption and breast density: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev 26(2):170–178. https://doi.org/10.1158/1055-9965.epi-16-0522

    Article  CAS  Google Scholar 

  25. Woolcott CG, Courneya KS, Boyd NF et al (2010) Mammographic density change with 1 year of aerobic exercise among postmenopausal women: a randomized controlled trial. Cancer Epidemiol Biomark Prev 19(4):1112–1121. https://doi.org/10.1158/1055-9965.epi-09-0801

    Article  Google Scholar 

  26. Trinh T, Eriksson M, Darabi H et al (2015) Background risk of breast cancer and the association between physical activity and mammographic density. Breast Cancer Res 17:50. https://doi.org/10.1186/s13058-015-0565-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Conroy SM, Butler LM, Harvey D et al (2010) Physical activity and change in mammographic density: the study of women’s health across the nation. Am J Epidemiol 171(9):960–968

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yaghjyan L, Colditz GA, Wolin K (2012) Physical activity and mammographic breast density: a systematic review. Breast Cancer Res Treat 135(2):367–380. https://doi.org/10.1007/s10549-012-2152-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Suijkerbuijk KP, Van Duijnhoven FJ, Van Gils CH et al (2006) Physical activity in relation to mammographic density in the dutch prospect-European prospective investigation into cancer and nutrition cohort. Cancer Epidemiol Biomark Prev 15 (3):456–460. https://doi.org/10.1158/1055-9965.epi-05-0569

    Article  Google Scholar 

  30. Siozon CC, Ma H, Hilsen M et al (2006) The association between recreational physical activity and mammographic density. Int J Cancer 119(7):1695–1701. https://doi.org/10.1002/ijc.22020

    Article  PubMed  CAS  Google Scholar 

  31. Reeves KW, Gierach GL, Modugno F (2007) Recreational physical activity and mammographic breast density characteristics. Cancer Epidemiol Biomark Prev 16(5):934–942. https://doi.org/10.1158/1055-9965.epi-06-0732

    Article  Google Scholar 

  32. Pettee Gabriel K, Klifa C, Perez A et al (2013) Adolescent and young adult exposure to physical activity and breast density. Med Sci Sports Exerc 45(8):1515–1523. https://doi.org/10.1249/MSS.0b013e318289a7f8

    Article  PubMed  Google Scholar 

  33. Sellers TA, Vachon CM, Pankratz VS et al (2007) Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density. Am J Epidemiol 166(4):456–464. https://doi.org/10.1093/aje/kwm112

    Article  PubMed  CAS  Google Scholar 

  34. Tseng M, Olufade TO, Evers KA et al (2011) Adolescent lifestyle factors and adult breast density in U.S. Chinese immigrant women. Nutr Cancer 63(3):342–349. https://doi.org/10.1080/01635581.2011.535955

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jeffreys M, Warren R, Gunnell D et al (2004) Life course breast cancer risk factors and adult breast density (United Kingdom). Cancer Causes Control 15(9):947–955. https://doi.org/10.1007/s10522-004-2473-3

    Article  PubMed  Google Scholar 

  36. Peters TM, Ekelund U, Leitzmann M et al (2008) Physical activity and mammographic breast density in the EPIC-Norfolk cohort study. Am J Epidemiol 167(5):579–585. https://doi.org/10.1093/aje/kwm350

    Article  PubMed  Google Scholar 

  37. Gram IT, Funkhouser E, Tabar L (1999) Moderate physical activity in relation to mammographic patterns. Cancer Epidemiol Biomark Prev 8(2):117–122

    CAS  Google Scholar 

  38. Brand JS, Czene K, Eriksson L et al (2013) Influence of lifestyle factors on mammographic density in postmenopausal women. PLoS ONE 8(12):e81876. https://doi.org/10.1371/journal.pone.0081876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Oestreicher N, Capra A, Bromberger J et al (2008) Physical activity and mammographic density in a cohort of midlife women. Med Sci Sports Exerc 40(3):451–456. https://doi.org/10.1249/MSS.0b013e31815f5b47

    Article  PubMed  Google Scholar 

  40. Vachon CM, Kuni CC, Anderson K et al (2000) Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11(7):653–662

    Article  PubMed  CAS  Google Scholar 

  41. Wolin KY, Colangelo LA, Chiu BC et al (2007) Associations of physical activity, sedentary time, and insulin with percent breast density in Hispanic women. J Women’s Health (2002) 16(7):1004–1011. https://doi.org/10.1089/jwh.2006.0282

    Article  Google Scholar 

  42. Samimi G, Colditz GA, Baer HJ et al (2008) Measures of energy balance and mammographic density in the Nurses’ Health Study. Breast Cancer Res Treat 109(1):113–122. https://doi.org/10.1007/s10549-007-9631-7

    Article  PubMed  Google Scholar 

  43. Qureshi SA, Ellingjord-Dale M, Hofvind S et al (2012) Physical activity and mammographic density in a cohort of postmenopausal Norwegian women; a cross-sectional study. SpringerPlus 1(1):75. https://doi.org/10.1186/2193-1801-1-75

    Article  PubMed  PubMed Central  Google Scholar 

  44. Irwin ML, Aiello EJ, McTiernan A et al (2006) Pre-diagnosis physical activity and mammographic density in breast cancer survivors. Breast Cancer Res Treat 95(2):171–178. https://doi.org/10.1007/s10549-005-9063-1

    Article  PubMed  Google Scholar 

  45. Irwin ML, Aiello EJ, McTiernan A et al (2007) Physical activity, body mass index, and mammographic density in postmenopausal breast cancer survivors. J Clin Oncol 25(9):1061–1066. https://doi.org/10.1200/jco.2006.07.3965

    Article  PubMed  Google Scholar 

  46. Marmara EA, Papacharalambous XN, Kouloulias VE et al (2011) Physical activity and mammographic parenchymal patterns among Greek postmenopausal women. Maturitas 69(1):74–80. https://doi.org/10.1016/j.maturitas.2011.02.003

    Article  PubMed  Google Scholar 

  47. Masala G, Assedi M, Ambrogetti D et al (2009) Physical activity and mammographic breast density in a Mediterranean population: the EPIC Florence longitudinal study. Int J Cancer 124(7):1654–1661. https://doi.org/10.1002/ijc.24099

    Article  PubMed  CAS  Google Scholar 

  48. Warren MP, Perlroth NE (2001) The effects of intense exercise on the female reproductive system. J Endocrinol 170(1):3–11

    Article  PubMed  CAS  Google Scholar 

  49. Friedenreich CM (2011) Physical activity and breast cancer: review of the epidemiologic evidence and biologic mechanisms. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer 188:125–139. https://doi.org/10.1007/978-3-642-10858-7_11

    Article  PubMed  CAS  Google Scholar 

  50. Hallal PC, Andersen LB, Bull FC et al (2012) Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380(9838):247–257. https://doi.org/10.1016/s0140-6736(12)60646-1

    Article  PubMed  Google Scholar 

  51. Turnbull AEKL, Cohen ME (1993) Mammographic parenchymal patterns in Asian and Caucasian women attending for screening. Clin Radiol 48:38–40

    Article  PubMed  CAS  Google Scholar 

  52. Mariapun S, Li J, Yip CH et al (2015) Ethnic differences in mammographic densities: an Asian cross-sectional study. PLoS ONE 10(2):e0117568. https://doi.org/10.1371/journal.pone.0117568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Eriksson M, Czene K, Pawitan Y et al (2017) A clinical model for identifying the short-term risk of breast cancer. Breast Cancer Res 19(1):29. https://doi.org/10.1186/s13058-017-0820-y

    Article  PubMed  PubMed Central  Google Scholar 

  54. Highnam R, Brady SM, Yaffe MJ et al (2010) Robust breast composition measurement—VolparaTM. In: Martí J, Oliver A, Freixenet J, Martí R (eds) Digital mammography: 10th international workshop, IWDM 2010, Girona, Catalonia, Spain, June 16–18, 2010. Proceedings. Springer, Berlin, pp 342–349. https://doi.org/10.1007/978-3-642-13666-5_46

    Chapter  Google Scholar 

  55. Rajaram N, Mariapun S, Eriksson M et al (2017) Differences in mammographic density between Asian and Caucasian populations: a comparative analysis. Breast Cancer Res Treat 161(2):353–362. https://doi.org/10.1007/s10549-016-4054-y

    Article  PubMed  Google Scholar 

  56. Gabrielson M, Eriksson M, Hammarstrom M et al (2017) Cohort profile: The Karolinska mammography project for risk prediction of breast cancer (KARMA). Int J Epidemiol 46(6):1740–1741. https://doi.org/10.1093/ije/dyw357

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ainsworth BE, Haskell WL, Herrmann SD et al (2011) 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43(8):1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12

    Article  PubMed  Google Scholar 

  58. World Health Organization (2011) global recommendations on physical activity for health 18–64 years old. World Health Organization, Geneva. http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/

  59. World Health Organization (2011) Global recommendations on physical activity for health 5–17 years old. World Health Organization, Geneva. http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/

  60. Chittaranjan S, Yajnik JSY (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–163

    Article  Google Scholar 

  61. World Cancer Research Fund AIfCR (2018) Diet, nutrition, physical activity and cancer: a global perspective. Continuous Update Project Expert Report 2018

  62. Maskarinec G, Ju D, Horio D et al (2016) Involution of breast tissue and mammographic density. Breast cancer research 18(1):128. https://doi.org/10.1186/s13058-016-0792-3

    Article  PubMed  Google Scholar 

  63. Friedenreich CM, Neilson HK, O’Reilly R et al (2015) Effects of a high vs moderate volume of aerobic exercise on adiposity outcomes in postmenopausal women: a randomized clinical trial. JAMA Oncol 1(6):766–776. https://doi.org/10.1001/jamaoncol.2015.2239

    Article  PubMed  Google Scholar 

  64. Irwin ML, Yasui Y, Ulrich CM et al (2003) Effect of exercise on total and intra-abdominal body fat in postmenopausal women: a randomized controlled trial. JAMA 289(3):323–330

    Article  PubMed  Google Scholar 

  65. Garland M, Hunter DJ, Colditz GA et al (1998) Menstrual cycle characteristics and history of ovulatory infertility in relation to breast cancer risk in a large cohort of US women. Am J Epidemiol 147(7):636–643

    Article  PubMed  CAS  Google Scholar 

  66. Sartor H, Lang K, Rosso A et al (2016) Measuring mammographic density: comparing a fully automated volumetric assessment versus European radiologists’ qualitative classification. Eur Radiol 26(12):4354–4360. https://doi.org/10.1007/s00330-016-4309-3

    Article  PubMed  PubMed Central  Google Scholar 

  67. Destounis S, Arieno A, Morgan R et al (2017) Qualitative versus quantitative mammographic breast density assessment: applications for the US and abroad. Diagnostics. https://doi.org/10.3390/diagnostics7020030

    Article  PubMed  PubMed Central  Google Scholar 

  68. Baines CJ, Vidmar M, McKeown-Eyssen G et al (1997) Impact of menstrual phase on false-negative mammograms in the Canadian National Breast Screening Study. Cancer 80(4):720–724

    Article  PubMed  CAS  Google Scholar 

  69. White E, Velentgas P, Mandelson MT et al (1998) Variation in mammographic breast density by time in menstrual cycle among women aged 40–49 years. J Natl Cancer Inst 90(12):906–910

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank participants for taking part in this study, all staff at the Health Screening Centre and Imaging Department of Subang Jaya Medical Centre and the Biomedical Imaging Department of University Malaya Medical Centre (particularly Dr Kartini Rahmat and Prof Ng Kwan Hoong) for assistance in patient recruitment, mammographic screening, and reporting.

Funding

The MyMammo study is funded by the funds raised through the Sime Darby LPGA Tournament; the University Malaya Research Grant [RP046B-15HTM]; and the High Impact Research Grant [UM.C/625/1/HIR-MOHE].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Hwang Teo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committees and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 482 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soh, W.H., Rajaram, N., Mariapun, S. et al. Physical activity and mammographic density in an Asian multi-ethnic cohort. Cancer Causes Control 29, 883–894 (2018). https://doi.org/10.1007/s10552-018-1064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-018-1064-6

Keywords

Navigation