Log in

Breast cancer risk in relation to plasma metabolites among Hispanic and African American women

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

A Correction to this article was published on 01 June 2019

This article has been updated

Abstract

Purpose

The metabolic etiology of breast cancer has been explored in the past several years using metabolomics. However, most of these studies only included non-Hispanic White individuals.

Methods

To fill this gap, we performed a two-step (discovery and validation) metabolomics profiling in plasma samples from 358 breast cancer patients and 138 healthy controls. All study subjects were either Hispanics or non-Hispanic African Americans.

Results

A panel of 14 identified metabolites significantly differed between breast cancer cases and healthy controls in both the discovery and validation sets. Most of these identified metabolites were lipids. In the pathway analysis, citrate cycle (TCA cycle), arginine and proline metabolism, and linoleic acid metabolism pathways were observed, and they significantly differed between breast cancer cases and healthy controls in both sets. From those 14 metabolites, we selected 9 non-correlated metabolites to generate a metabolic risk score. Increased metabolites risk score was associated with a 1.87- and 1.63-fold increased risk of breast cancer in the discovery and validation sets, respectively (Odds ratio (OR) 1.87, 95% Confidence interval (CI) 1.50, 2.32; OR 1.63, 95% CI 1.36, 1.95).

Conclusions

In summary, our study identified metabolic profiles and pathways that significantly differed between breast cancer cases and healthy controls in Hispanic or non-Hispanic African American women. The results from our study might provide new insights on the metabolic etiology of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 01 June 2019

    In the original publication of the article, the sixth author name Krita A. Zanetti was mistakenly included as co-author. The corrected author group is given in the correction article. The original article has been corrected.

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. Yedjou CG, Tchounwou PB, Payton M, Miele L, Fonseca DD, Lowe L, Alo RA (2017) Assessing the racial and ethnic disparities in breast cancer mortality in the United States. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14050486

    Article  PubMed  PubMed Central  Google Scholar 

  3. Claudino WM, Goncalves PH, di Leo A, Philip PA, Sarkar FH (2012) Metabolomics in cancer: a bench-to-bedside intersection. Crit Rev Oncol Hematol 84(1):1–7. https://doi.org/10.1016/j.critrevonc.2012.02.009

    Article  PubMed  Google Scholar 

  4. Yu B, Zheng Y, Alexander D, Morrison AC, Coresh J, Boerwinkle E (2014) Genetic determinants influencing human serum metabolome among African Americans. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004212

    Article  PubMed  PubMed Central  Google Scholar 

  5. Playdon MC, Ziegler RG, Sampson JN, Stolzenberg-Solomon R, Thompson HJ, Irwin ML, Mayne ST, Hoover RN, Moore SC (2017) Nutritional metabolomics and breast cancer risk in a prospective study. Am J Clin Nutr 106(2):637–649. https://doi.org/10.3945/ajcn.116.150912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moore SC, Playdon MC, Sampson JN, Hoover RN, Trabert B, Matthews CE, Ziegler RG (2018) A metabolomics analysis of body mass index and postmenopausal breast cancer risk. J Natl Cancer Inst 110(6):588–597. https://doi.org/10.1093/jnci/djx244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen J, Yan L, Liu S, Ambrosone CB, Zhao H (2013) Plasma metabolomic profiles in breast cancer patients and healthy controls: by race and tumor receptor subtypes. Transl Oncol 6(6):757–765. https://doi.org/10.1593/tlo.13619

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hart CD, Vignoli A, Tenori L, Uy GL, To TV, Adebamowo C, Hossain SM, Biganzoli L, Risi E, Love RR, Luchinat C, Di Leo A (2017) Serum metabolomic profiles identify ER-positive early breast cancer patients at increased risk of disease recurrence in a multicenter population. Clin Cancer Res 23(6):1422–1431. https://doi.org/10.1158/1078-0432.Ccr-16-1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tenori L, Oakman C, Morris PG, Gralka E, Turner N, Cappadona S, Fornier M, Hudis C, Norton L, Luchinat C, Di Leo A (2015) Serum metabolomic profiles evaluated after surgery may identify patients with oestrogen receptor negative early breast cancer at increased risk of disease recurrence. Results from a retrospective study. Mol Oncol 9(1):128–139. https://doi.org/10.1016/j.molonc.2014.07.012

    Article  CAS  PubMed  Google Scholar 

  10. Oakman C, Tenori L, Claudino WM, Cappadona S, Nepi S, Battaglia A, Bernini P, Zafarana E, Saccenti E, Fornier M, Morris PG, Biganzoli L, Luchinat C, Bertini I, Di Leo A (2011) Identification of a serum-detectable metabolomic fingerprint potentially correlated with the presence of micrometastatic disease in early breast cancer patients at varying risks of disease relapse by traditional prognostic methods. Ann Oncol 22(6):1295–1301. https://doi.org/10.1093/annonc/mdq606

    Article  CAS  PubMed  Google Scholar 

  11. Asiago VM, Alverado LZ, Shanaiah N, Gowda NG, Owusu-Sarfo K, Ballas R, Raftery D (2010) Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. https://doi.org/10.1158/0008-5472.Sabcs10-P3-10-18

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang AH, Sun H, Qiu S, Wang XJ (2013) Metabolomics in noninvasive breast cancer. Clin Chim Acta 424:3–7. https://doi.org/10.1016/j.cca.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  13. Hadi NI, Jamal Q, Iqbal A, Shaikh F, Somroo S, Musharraf SG (2017) Serum metabolomic profiles for breast cancer diagnosis, grading and staging by gas chromatography-mass spectrometry. Sci Rep. https://doi.org/10.1038/s41598-017-01924-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khodadadi-Jamayran A, Akgol-Oksuz B, Afanasyeva Y, Heguy A, Thompson M, Ray K, Giro-Perafita A, Sanchez I, Wu X, Tripathy D, Zeleniuch-Jacquotte A, Tsirigos A, Esteva FJ (2018) Prognostic role of elevated mir-24-3p in breast cancer and its association with the metastatic process. Oncotarget 9(16):12868–12878. https://doi.org/10.18632/oncotarget.24403

    Article  PubMed  PubMed Central  Google Scholar 

  15. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81(16):6656–6667. https://doi.org/10.1021/ac901536h

    Article  CAS  PubMed  Google Scholar 

  16. DeHaven CD, Evans AM, Dai HP, Lawton KA (2010) Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminform. https://doi.org/10.1186/1758-2946-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ, Matthews CE, Hsing AW, Tan YT, Ji BT, Chow WH, Cai QY, Liu DK, Yang G, **ang YB, Zheng W, Sinha R, Cross AJ, Moore SC (2013) Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidem Biomar 22(4):631–640. https://doi.org/10.1158/1055-9965.Epi-12-1109

    Article  CAS  Google Scholar 

  18. Chong EY, Huang Y, Wu H, Ghasemzadeh N, Uppal K, Quyyumi AA, Jones DP, Yu T (2015) Local false discovery rate estimation using feature reliability in LC/MS metabolomics data. Sci Rep 5:17221. https://doi.org/10.1038/srep17221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, **a J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41(Database issue):D801–D807. https://doi.org/10.1093/nar/gks1065

    Article  CAS  PubMed  Google Scholar 

  20. Chong J, **a JG (2018) MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34(24):4313–4314. https://doi.org/10.1093/bioinformatics/bty528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moore SC, Matthews CE, Sampson JN, Stolzenberg-Solomon RZ, Zheng W, Cai Q, Tan YT, Chow WH, Ji BT, Liu DK, **ao Q, Boca SM, Leitzmann MF, Yang G, **ang YB, Sinha R, Shu XO, Cross AJ (2014) Human metabolic correlates of body mass index. Metabolomics 10(2):259–269. https://doi.org/10.1007/s11306-013-0574-1

    Article  CAS  PubMed  Google Scholar 

  22. Zhao H, Shen J, Djukovic D, Daniel-MacDougall C, Gu H, Wu X, Chow WH (2016) Metabolomics-identified metabolites associated with body mass index and prospective weight gain among Mexican American women. Obes Sci Pract 2(3):309–317. https://doi.org/10.1002/osp4.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodriguez-Enriquez S, Hernandez-Esquivel L, Marin-Hernandez A, El Hafidi M, Gallardo-Perez JC, Hernandez-Resendiz I, Rodriguez-Zavala JS, Pacheco-Velazquez SC, Moreno-Sanchez R (2015) Mitochondrial free fatty acid beta-oxidation supports oxidative phosphorylation and proliferation in cancer cells. Int J Biochem Cell B 65:209–221. https://doi.org/10.1016/j.biocel.2015.06.010

    Article  CAS  Google Scholar 

  24. Nieman KM, Romero IL, Van Houten B, Lengyel E (2013) Adipose tissue and adipocytes support tumorigenesis and metastasis. BBA Mol Cell Biol Lipids 1831(10):1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010

    Article  CAS  Google Scholar 

  25. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, Somlo G, Jandial R, Ann D, Hanash S, Jove R, Yu H (2018) JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27(1):136–150 e135. https://doi.org/10.1016/j.cmet.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  26. Kinlaw WB, Baures PW, Lupien LE, Davis WL, Kuemmerle NB (2016) Fatty acids and breast cancer: make them on site or have them delivered. J Cell Physiol 231(10):2128–2141. https://doi.org/10.1002/jcp.25332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cui M, Wang QL, Chen G (2016) Serum metabolomics analysis reveals changes in signaling lipids in breast cancer patients. Biomed Chromatogr 30(1):42–47. https://doi.org/10.1002/bmc.3556

    Article  CAS  PubMed  Google Scholar 

  28. O’Flaherty JT, Wooten RE, Samuel MP, Thomas MJ, Levine EA, Case LD, Akman SA, Edwards IJ (2013) Fatty acid metabolites in rapidly proliferating breast cancer. PLoS ONE. https://doi.org/10.1371/journal.pone.0063076

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang H, Zhou L, Shi W, Song N, Yu K, Gu Y (2012) A mechanism underlying the effects of polyunsaturated fatty acids on breast cancer. Int J Mol Med 30(3):487–494. https://doi.org/10.3892/ijmm.2012.1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Humphreys K, Heikkinen T, Aittomaki K, Blomqvist C, Pharoah PD, Dunning AM, Ahmed S, Hooning MJ, Martens JW, van den Ouweland AM, Alfredsson L, Palotie A, Peltonen-Palotie L, Irwanto A, Low HQ, Teoh GH, Thalamuthu A, Easton DF, Nevanlinna H, Liu J, Czene K, Hall P (2011) A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Res Treat 126(3):717–727. https://doi.org/10.1007/s10549-010-1172-9

    Article  CAS  PubMed  Google Scholar 

  31. Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJF, Mackay GM, Labuschagne CF, Gay D, Kruiswijk F, Blagih J, Vincent DF, Campbell KJ, Ceteci F, Sansom OJ, Blyth K, Vousden KH (2017) Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544(7650):372–376. https://doi.org/10.1038/nature22056

    Article  CAS  PubMed  Google Scholar 

  32. Heber D, Byerly LO, Chlebowski RT (1985) Metabolic abnormalities in the cancer patient. Cancer 55 (1):225–229

    Article  CAS  PubMed  Google Scholar 

  33. Bi X, Henry CJ (2017) Plasma-free amino acid profiles are predictors of cancer and diabetes development. Nutr Diabetes 7(3):e249. https://doi.org/10.1038/nutd.2016.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, Saruki N, Bando E, Kimura H, Imamura F, Moriyama M, Ikeda I, Chiba A, Oshita F, Imaizumi A, Yamamoto H, Miyano H, Horimoto K, Tochikubo O, Mitsushima T, Yamakado M, Okamoto N (2011) Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS ONE 6(9):e24143. https://doi.org/10.1371/journal.pone.0024143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Quevedo-Coli S, Crespi C, Benito E, Palou A, Roca P (1997) Alterations in circulating fatty acids and the compartmentation of selected metabolites in women with breast cancer. Biochem Mol Biol Int 41(1):1–10

    CAS  PubMed  Google Scholar 

  36. Kuhn T, Sookthai D, Graf ME, Schubel R, Freisling H, Johnson T, Katzke V, Kaaks R (2017) Albumin, bilirubin, uric acid and cancer risk: results from a prospective population-based study. Br J Cancer 117(10):1572–1579. https://doi.org/10.1038/bjc.2017.313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu XA, Meng QH, Ye YQ, Hildebrandt MAT, Gu J, Wu XF (2015) Prognostic significance of pretreatment serum levels of albumin, LDH and total bilirubin in patients with non-metastatic breast cancer. Carcinogenesis 36(2):243–248. https://doi.org/10.1093/carcin/bgu247

    Article  CAS  PubMed  Google Scholar 

  38. Srivastava P, Hira SK, Srivastava DN, Gupta U, Sen P, Singh RA, Manna PP (2017) Protease-responsive targeted delivery of doxorubicin from bilirubin-BSA-capped mesoporous silica nanoparticles against colon cancer. ACS Biomater Sci Eng 3(12):3376–3385. https://doi.org/10.1021/acsbiomaterials.7b00635

    Article  CAS  PubMed  Google Scholar 

  39. Horsfall LJ, Rait G, Walters K, Swallow DM, Pereira SP, Nazareth I, Petersen I (2011) Serum Bilirubin and Risk of Respiratory Disease and Death. Jama-J Am Med Assoc 305(7):691–697. doi:https://doi.org/10.1001/jama.2011.124

    Article  CAS  Google Scholar 

  40. Wen CP, Zhang FM, Liang D, Wen C, Gu J, Skinner H, Chow WH, Ye YQ, Pu X, Hildebrandt MAT, Huang MS, Chen CH, Hsiung CA, Tsai MK, Tsao CK, Lippman SM, Wu XF (2015) The ability of bilirubin in identifying smokers with higher risk of lung cancer: a large cohort study in conjunction with global metabolomic profiling. Clin Cancer Res 21(1):193–200. https://doi.org/10.1158/1078-0432.Ccr-14-0748

    Article  CAS  PubMed  Google Scholar 

  41. Temme EHM, Zhang JJ, Schouten EG, Kesteloot H (2001) Serum bilirubin and 10-year mortality risk in a Belgian population. Cancer Cause Control 12(10):887–894. doi:Doi 10.1023/A:1013794407325

    Article  CAS  Google Scholar 

  42. Yadava N, Schneider SS, Jerry DJ, Kim C (2013) Impaired mitochondrial metabolism and mammary carcinogenesis. J Mammary Gland Biol 18(1):75–87. https://doi.org/10.1007/s10911-012-9271-3

    Article  Google Scholar 

  43. Ahn CS, Metallo CM (2015) Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. https://doi.org/10.1186/s40170-015-0128-2

    Article  PubMed  PubMed Central  Google Scholar 

  44. Grzybowska-Szatkowska L, Rzymowska J, Slaska B (2016) Oxidative phosphorylation genes in breast cancer cells. Int J Mol Med 38:S78–S78

    Google Scholar 

  45. Marini C, Bianchi G, Buschiazzo A, Ravera S, Martella R, Bottoni G, Petretto A, Emionite L, Monteverde E, Capitanio S, Inglese E, Fabbi M, Bongioanni F, Garaboldi L, Bruzzi P, Orengo AM, Raffaghello L, Sambuceti G (2016) Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci Rep. https://doi.org/10.1038/srep19569

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meric-Bernstam F, Evans K, Zheng XF, Su XP, Yuca E, Scott S, Akcakanat A, Ueno N, Lim B, Litton J, Valero V, Symmans F, Hortobagyi G, Perou C, Tripathy D, Draetta G, Marszalek J, Gonzalez-Angulo AM, Moulder S (2017) Oxidative phosphorylation as a target in triple negative breast cancer therapy. Cancer Res. https://doi.org/10.1158/1538-7445.Am2017-4970

    Article  PubMed  PubMed Central  Google Scholar 

  47. Putignani L, Raffa S, Pescosolido R, Aimati L, Signore F, Torrisi MR, Grammatico P (2008) Alteration of expression levels of the oxidative phosphorylation system (OXPHOS) in breast cancer cell mitochondria. Breast Cancer Res Treat 110(3):439–452. https://doi.org/10.1007/s10549-007-9738-x

    Article  CAS  PubMed  Google Scholar 

  48. Phang JM, Liu W, Hancock CN, Fischer JW (2015) Proline metabolism and cancer: emerging links to glutamine and collagen. Curr Opin Clin Nutr 18(1):71–77. https://doi.org/10.1097/Mco.0000000000000121

    Article  CAS  Google Scholar 

  49. Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C, Grunewald TGP, Fendt SM (2017) Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. https://doi.org/10.1038/ncomms15267

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mouradian M, Kikawa KD, Dranka BP, Komas SM, Kalyanaraman B, Pardini RS (2015) Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinogen 54(9):810–820. https://doi.org/10.1002/mc.22151

    Article  CAS  Google Scholar 

  51. Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, Souza A, Cheng S, McCabe EL, Yang E, Shi X, Deo R, Roth FP, Asnani A, Rhee EP, Systrom DM, Semigran MJ, Vasan RS, Carr SA, Wang TJ, Sabatine MS, Clish CB, Gerszten RE (2010) Metabolic signatures of exercise in human plasma. Sci Transl Med 2(33):33ra37. https://doi.org/10.1126/scitranslmed.3001006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by U01 CA179655 from NCI/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in this study were approved by the Institutional Review Board at M D Anderson Cancer Center and in accordance with the ethical standards of 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The sixth author name Krita A. Zanetti was mistakenly included as co-author. The author group was corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Shen, J., Moore, S.C. et al. Breast cancer risk in relation to plasma metabolites among Hispanic and African American women. Breast Cancer Res Treat 176, 687–696 (2019). https://doi.org/10.1007/s10549-019-05165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05165-4

Keywords

Navigation