Log in

Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Breast cancers have a poorer prognosis if estrogen receptor expression was lost during recurrence. It is unclear whether this conversion is cell autonomous or whether it can be promoted by the microenvironment during cancer dormancy. We explored the ability of marrow-derived stromal cell lines to arrest co-cultured breast cancer cells and suppress estrogen receptor alpha (ER) expression during arrest, facilitating the emergence of estrogen-independent breast cancer clones.

Methods

Cancer cell growth, ER protein, microRNA, and mRNA levels were measured in breast cancer cell lines exposed to conditioned medium from marrow stromal lines in the presence and absence of estrogen and of signaling pathway modulators.

Results

We demonstrate that paracrine signaling from the stromal cell line HS5 downregulated ER in T47D and MCF7 breast cancer cells. This occurred at the mRNA level and also through decreased ER protein stability. Additionally, conditioned medium (CM) from HS5 arrested the breast cancer cells in G0/G1 in part through interleukin-1 (IL1) and inhibited cancer cell growth despite the activation of proliferative pathways (Erk and AKT) by the CM. Similar findings were observed for CM from the hFOB 1.19 osteoblastic cell line but not from two other fibroblastic marrow lines, HS27A and KM101. HS5-CM inhibition of MCF7 proliferation could not be restored by exogenous ER, but was restored by the IL1-antagonist IL1RA. In the presence of IL1RA, HS5-CM activation of AKT and Erk enabled the outgrowth of breast cancer cells with suppressed ER that were fulvestrant-resistant and estrogen-independent.

Conclusions

We conclude that marrow-derived stromal cells can destabilize estrogen receptor protein to convert the ER status of growth-arrested ER+ breast cancer cell lines. The balance between stromal pro- and anti-proliferative signals controlled the switch from a dormant phenotype to estrogen-independent cancer cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoefnagel LD, van de Vijver MJ, van Slooten HJ, Wesseling P, Wesseling J, Westenend PJ, Bart J, Seldenrijk CA, Nagtegaal ID, Oudejans J et al (2010) Receptor conversion in distant breast cancer metastases. Breast Cancer Res 12(5):R75

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hoefnagel LD, Moelans CB, Meijer SL, van Slooten HJ, Wesseling P, Wesseling J, Westenend PJ, Bart J, Seldenrijk CA, Nagtegaal ID et al (2012) Prognostic value of estrogen receptor alpha and progesterone receptor conversion in distant breast cancer metastases. Cancer 118(20):4929–4935

    Article  CAS  PubMed  Google Scholar 

  3. Fehm T, Krawczyk N, Solomayer EF, Becker-Pergola G, Durr-Storzer S, Neubauer H, Seeger H, Staebler A, Wallwiener D, Becker S (2008) ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res 10(5):R76

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, Yoshida M, Tsuda H, Tamura K, Ochiya T (2014) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 7(332):ra63

    Article  PubMed  Google Scholar 

  5. Ogba N, Manning NG, Bliesner BS, Ambler SK, Haughian JM, Pinto MP, Jedlicka P, Joensuu K, Heikkila P, Horwitz KB (2014) Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells. Breast Cancer Res 16(6):489

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhou W, Slingerland JM (2014) Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat Rev Cancer 14(1):26–38

    Article  CAS  PubMed  Google Scholar 

  7. Macaluso M, Montanari M, Noto PB, Gregorio V, Bronner C, Giordano A (2007) Epigenetic modulation of estrogen receptor-α by pRb family proteins: a novel mechanism in breast cancer. Cancer Res 67(16):7731–7737

    Article  CAS  PubMed  Google Scholar 

  8. Dhasarathy A, Kajita M, Wade PA (2007) The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-α. Mol Endocrinol 21(12):2907–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan X, Zhou T, Tai YH, Wang C, Zhao J, Cao Y, Chen Y, Zhang PJ, Yu M, Zhen C et al (2011) Elevated expression of CUEDC2 protein confers endocrine resistance in breast cancer. Nat Med 17(6):708–714

    Article  CAS  PubMed  Google Scholar 

  10. Fan M, Bigsby RM, Nephew KP (2003) The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERα-positive breast cancer cells. Mol Endocrinol 17(3):356–365

    Article  CAS  PubMed  Google Scholar 

  11. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O’Malley BW (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96(5):1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klinge CM (2012) miRNAs and estrogen action. Trends Endocrinol Metab 23(5):223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shah SH, Miller P, Garcia-Contreras M, Ao Z, Machlin L, Issa E, El-Ashry D (2015) Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther 16(11):1671–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pinzone JJ, Stevenson H, Strobl JS, Berg PE (2004) Molecular and cellular determinants of estrogen receptor α expression. Mol Cell Biol 24(11):4605–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, Raffoul W, Delaloye JF, Treboux A, Fiche M et al (2016) A preclinical model for ERα-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell 29(3):407–422

    Article  CAS  PubMed  Google Scholar 

  16. Roecklein BA, Torok-Storb B (1995) Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood 85(4):997–1005

    CAS  PubMed  Google Scholar 

  17. Iwata M, Sandstrom RS, Delrow JJ, Stamatoyannopoulos JA, Torok-Storb B (2014) Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes. Stem Cells Dev 23(7):729–740

    Article  CAS  PubMed  Google Scholar 

  18. Iwata M, Torok-Storb B, Wayner EA, Carter WG (2014) CDCP1 identifies a CD146 negative subset of marrow fibroblasts involved with cytokine production. PLoS ONE 9(10):e109304

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marlow R, Honeth G, Lombardi S, Cariati M, Hessey S, Pipili A, Mariotti V, Buchupalli B, Foster K, Bonnet D et al (2013) A novel model of dormancy for bone metastatic breast cancer cells. Cancer Res 73(23):6886–6899

    Article  CAS  PubMed  Google Scholar 

  20. Cavnar SP, Rickelmann AD, Meguiar KF, **ao A, Dosch J, Leung BM, Cai Lesher-Perez S, Chitta S, Luker KE, Takayama S et al (2015) Modeling selective elimination of quiescent cancer cells from bone marrow. Neoplasia 17(8):625–633

    Article  PubMed  PubMed Central  Google Scholar 

  21. FitzGerald TJ, Santucci MA, Harigaya K, Woda B, McKenna M, Sakakeeny MA, Pierce JH, Kase K, Holland CA, Greenberger JS (1988) Radiosensitivity of permanent human bone marrow stromal cell lines: effect of dose rate. Int J Radiat Oncol Biol Phys 15(5):1153–1159

    Article  CAS  PubMed  Google Scholar 

  22. Kruger S, Abd Elmageed ZY, Hawke DH, Worner PM, Jansen DA, Abdel-Mageed AB, Alt EU, Izadpanah R (2014) Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer 14:44

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shelke GV, Lasser C, Gho YS, Lotvall J (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 3:24783

  24. Kobayashi A, Okuda H, **ng F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C et al (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208(13):2641–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63(7):1684–1695

    CAS  PubMed  Google Scholar 

  26. Chery L, Lam HM, Coleman I, Lakely B, Coleman R, Larson S, Aguirre-Ghiso JA, **a J, Gulati R, Nelson PS et al (2014) Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5(20):9939–9951

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sosa MS, Avivar-Valderas A, Bragado P, Wen HC, Aguirre-Ghiso JA (2011) ERK1/2 and p38α/β signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin Cancer Res 17(18):5850–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paciotti GF, Tamarkin L (1988) Interleukin-1 directly regulates hormone-dependent human breast cancer cell proliferation in vitro. Mol Endocrinol 2(5):459–464

    Article  CAS  PubMed  Google Scholar 

  29. Cowland JB, Muta T, Borregaard N (2006) IL-1beta-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IkappaB-zeta. J Immunol 176(9):5559–5566

    Article  CAS  PubMed  Google Scholar 

  30. Harris SA, Enger RJ, Riggs BL, Spelsberg TC (1995) Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res 10(2):178–186

    Article  CAS  PubMed  Google Scholar 

  31. Stoica A, Saceda M, Doraiswamy VL, Coleman C, Martin MB (2000) Regulation of estrogen receptor-α gene expression by epidermal growth factor. J Endocrinol 165(2):371–378

    Article  CAS  PubMed  Google Scholar 

  32. Stoica A, Saceda M, Fakhro A, Joyner M, Martin MB (2000) Role of insulin-like growth factor-I in regulating estrogen receptor-α gene expression. J Cell Biochem 76(4):605–614

    Article  CAS  PubMed  Google Scholar 

  33. West NR, Murphy LC, Watson PH (2012) Oncostatin M suppresses oestrogen receptor-α expression and is associated with poor outcome in human breast cancer. Endocr Relat Cancer 19(2):181–195

    Article  CAS  PubMed  Google Scholar 

  34. Chang HL, Sugimoto Y, Liu S, Ye W, Wang LS, Huang YW, Lin YC (2006) Keratinocyte growth factor (KGF) induces tamoxifen (Tam) resistance in human breast cancer MCF-7 cells. Anticancer Res 26(3A):1773–1784

    CAS  PubMed  Google Scholar 

  35. Petrel TA, Brueggemeier RW (2003) Increased proteasome-dependent degradation of estrogen receptor-α by TGF-β1 in breast cancer cell lines. J Cell Biochem 88(1):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takahashi M, Otsuka F, Miyoshi T, Otani H, Goto J, Yamashita M, Ogura T, Makino H, Doihara H (2008) Bone morphogenetic protein 6 (BMP6) and BMP7 inhibit estrogen-induced proliferation of breast cancer cells by suppressing p38 mitogen-activated protein kinase activation. J Endocrinol 199(3):445–455

    Article  CAS  PubMed  Google Scholar 

  37. Danforth DN Jr, Sgagias MK (1991) Interleukin 1α blocks estradiol-stimulated growth and down-regulates the estrogen receptor in MCF-7 breast cancer cells in vitro. Cancer Res 51(5):1488–1493

    CAS  PubMed  Google Scholar 

  38. Danforth DN Jr, Sgagias MK (1993) Interleukin-1α and interleukin-6 act additively to inhibit growth of MCF-7 breast cancer cells in vitro. Cancer Res 53(7):1538–1545

    CAS  PubMed  Google Scholar 

  39. Lang JD, Berry SM, Powers GL, Beebe DJ, Alarid ET (2013) Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr Biol 5(5):807–816

    Article  CAS  Google Scholar 

  40. Keshamouni VG, Mattingly RR, Reddy KB (2002) Mechanism of 17-β-estradiol-induced Erk1/2 activation in breast cancer cells. A role for HER2 AND PKC-delta. J Biol Chem 277(25):22558–22565

    Article  CAS  PubMed  Google Scholar 

  41. Svensson S, Jirstrom K, Ryden L, Roos G, Emdin S, Ostrowski MC, Landberg G (2005) ERK phosphorylation is linked to VEGFR2 expression and Ets-2 phosphorylation in breast cancer and is associated with tamoxifen treatment resistance and small tumours with good prognosis. Oncogene 24(27):4370–4379

    Article  CAS  PubMed  Google Scholar 

  42. Clark AS, West K, Streicher S, Dennis PA (2002) Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1(9):707–717

    CAS  PubMed  Google Scholar 

  43. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, Zhao H, Zhao Z, Du S, Tao J et al (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27(2):193–210

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pinto MP, Badtke MM, Dudevoir ML, Harrell JC, Jacobsen BM, Horwitz KB (2010) Vascular endothelial growth factor secreted by activated stroma enhances angiogenesis and hormone-independent growth of estrogen receptor-positive breast cancer. Cancer Res 70(7):2655–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rhodes LV, Muir SE, Elliott S, Guillot LM, Antoon JW, Penfornis P, Tilghman SL, Salvo VA, Fonseca JP, Lacey MR et al (2010) Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat 121(2):293–300

    Article  CAS  PubMed  Google Scholar 

  46. Fuchs-Young R, Shirley SH, Lambertz I, Colby JK, Tian J, Johnston D, Gimenez-Conti IB, Donehower LA, Conti CJ, Hursting SD (2011) P53 genotype as a determinant of ER expression and tamoxifen response in the MMTV-Wnt-1 model of mammary carcinogenesis. Breast Cancer Res Treat 130(2):399–408

    Article  CAS  PubMed  Google Scholar 

  47. Sgagias MK, Kasid A, Danforth DN Jr (1991) Interleukin-1α and tumor necrosis factor-α (TNFα) inhibit growth and induce TNF messenger RNA in MCF-7 human breast cancer cells. Mol Endocrinol 5(11):1740–1747

    Article  CAS  PubMed  Google Scholar 

  48. Sosnoski DM, Norgard RJ, Grove CD, Foster SJ, Mastro AM (2015) Dormancy and growth of metastatic breast cancer cells in a bone-like microenvironment. Clin Exp Metastasis 32(4):335–344

    Article  CAS  PubMed  Google Scholar 

  49. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Investig 121(4):1298–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Z, Orlowski RZ, Wang M, Kwak L, McCarty N (2014) Osteoblastic niche supports the growth of quiescent multiple myeloma cells. Blood 123(14):2204–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lawson MA, McDonald MM, Kovacic N, Hua Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt JA et al (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6:8983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pantschenko AG, Pushkar I, Anderson KH, Wang Y, Miller LJ, Kurtzman SH, Barrows G, Kreutzer DL (2003) The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 23(2):269–284

    CAS  PubMed  Google Scholar 

  53. Kumar S, Kishimoto H, Chua HL, Badve S, Miller KD, Bigsby RM, Nakshatri H (2003) Interleukin-1α promotes tumor growth and cachexia in MCF-7 xenograft model of breast cancer. Am J Pathol 163(6):2531–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 100(5):2645–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saito M, Fan D, Lachman LB (1995) Antitumor effects of liposomal IL1α and TNFα against the pulmonary metastases of the B16F10 murine melanoma in syngeneic mice. Clin Exp Metastasis 13(4):249–259

    Article  CAS  PubMed  Google Scholar 

  56. Pezzella KM, Neville ME, Huang JJ (1990) In vivo inhibition of tumor growth of B16 melanoma by recombinant interleukin 1β. I. Tumor inhibition parallels lymphocyte-activating factor activity of interleukin 1β proteins. Cytokine 2(5):357–362

    Article  CAS  PubMed  Google Scholar 

  57. Nakamura S, Nakata K, Kashimoto S, Yoshida H, Yamada M (1986) Antitumor effect of recombinant human interleukin 1α against murine syngeneic tumors. Jpn J Cancer Res 77(8):767–773

    CAS  PubMed  Google Scholar 

  58. Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH, Giancotti FG (2012) The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150(4):764–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martinez J, Zhang XH (2013) BMP/Coco antagonism as a deterministic factor of metastasis dormancy in lung. Breast Cancer Res 15(1):302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bodo M, Baroni T, Tabilio A (2009) Haematopoietic and stromal stem cell regulation by extracellular matrix components and growth factors. J Stem Cells 4(1):57–69

    CAS  PubMed  Google Scholar 

  61. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat 123(3):725–731

    Article  PubMed  Google Scholar 

  62. Fernandez-Garcia B, Eiro N, Miranda MA, Cid S, Gonzalez LO, Dominguez F, Vizoso FJ (2016) Prognostic significance of inflammatory factors expression by stroma from breast carcinomas. Carcinogenesis 37(8):768–776

    Article  CAS  PubMed  Google Scholar 

  63. Mittempergher L, Saghatchian M, Wolf DM, Michiels S, Canisius S, Dessen P, Delaloge S, Lazar V, Benz SC, Tursz T et al (2013) A gene signature for late distant metastasis in breast cancer identifies a potential mechanism of late recurrences. Mol Oncol 7(5):987–999

    Article  CAS  PubMed  Google Scholar 

  64. Zhang XH, ** X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA, Massague J (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154(5):1060–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lewis AM, Varghese S, Xu H, Alexander HR (2006) Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med 4:48

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dinarello CA (2010) Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev 29(2):317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Triozzi PL, Aldrich W (2010) Effects of interleukin-1 receptor antagonist and chemotherapy on host-tumor interactions in established melanoma. Anticancer Res 30(2):345–354

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by NIH Grant R01CA154728 (RAS). The project used the UPCI Biostatistics Facility and Cancer Proteomics Facility: Luminex Core that are supported in part by award P30CA047904. We thank Drs. Steffi Oesterreich and Tim Burns (University of Pittsburgh) for helpful comments; Dr. Vera Donnenberg for assistance with flow cytometry and for HFF1 foreskin fibroblasts; and Lucas Santana-Santos for his work on the microRNA analysis algorithm. In addition, we appreciate the generosity of Didier Picard (Universite de Geneve) for the gift of the ER-3′-UTR reporter plasmid; Dr. Sarat Chandarlapaty (Sloan Kettering Cancer Center) for MCF7 cells stably expressing inducible estrogen receptor or vector (mCherry) control; and University of Pittsburgh investigators Steffi Oesterreich for T47D cells, Michael Epperly for KM101 cells, and Adrian Lee for phospho-IGF1R antibody. The 3X ERE TATA luc was a gift from Donald McDonnell (Addgene plasmid # 11354), and pEGFP-C1-ER alpha was a gift from Michael Mancini (Addgene plasmid # 28230). We thank Yingjian Li (University of Pittsburgh) for assistance in exosome preparation. The use of the fluorescence plate reader in the laboratory of Dr. Ben van Houten (University of Pittsburgh) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Steinman.

Ethics declarations

Conflicts of interest

None of the authors have conflicts of interest with any material in this report.

Additional information

J. Huang and P. Woods contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 183 kb)

Supplementary material 2 (PDF 3755 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Woods, P., Normolle, D. et al. Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals. Breast Cancer Res Treat 161, 229–243 (2017). https://doi.org/10.1007/s10549-016-4052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-4052-0

Keywords

Navigation