Log in

Amount of stroma is associated with mammographic density and stromal expression of oestrogen receptor in normal breast tissues

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Following female sex and age, mammographic density is considered one of the strongest risk factors for breast cancer. Despite the association between mammographic density and breast cancer risk, little is known about the underlying histology and biological basis of breast density. To better understand the mechanisms behind mammographic density we assessed morphology, proliferation and hormone receptor status in relation to mammographic density in breast tissues from healthy women. Tissues were obtained from 2012–2013 by ultrasound-guided core needle biopsy from 160 women as part of the Karma (Karolinska mammography project for risk prediction for breast cancer) project. Mammograms were collected through routine mammography screening and mammographic density was calculated using STRATUS. The histological composition, epithelial and stromal proliferation status and hormone receptor status were assessed through immunohistochemical staining. Higher mammographic density was significantly associated with a greater proportion of stromal and epithelial tissue and a lower proportion of adipose tissue. Epithelial expression levels of Ki-67, oestrogen receptor (ER) and progesterone receptor (PR) were not associated with mammographic density. Epithelial Ki-67 was associated with a greater proportion of epithelial tissue, and epithelial PR was associated with a greater proportion of stromal and a lower proportion of adipose tissue. Epithelial ER was not associated with any tissues. In contrast, expression of ER in the stroma was significantly associated with a greater proportion of stroma, and negatively associated with the amount of adipose tissue. High mammographic density is associated with higher amount of stroma and epithelium and less amount of fat, but is not associated with a change in epithelial proliferation or receptor status. Increased expressions of both epithelial PR and stromal ER are associated with a greater proportion of stroma, suggesting hormonal involvement in regulating breast tissue composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

ER:

Oestrogen receptor

HRT:

Hormone replacement therapy

IHC:

Immunohistochemical

Karma:

Karolinska mammography project for risk prediction for breast cancer

PR:

Progesterone receptor

References

  1. Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87(9):670–675

    Article  CAS  PubMed  Google Scholar 

  2. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, Yaffe MJ (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236. doi:10.1056/NEJMoa062790

    Article  CAS  PubMed  Google Scholar 

  3. Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, Hoover R, Haile R (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87(21):1622–1629

    Article  CAS  PubMed  Google Scholar 

  4. McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15(6):1159–1169. doi:10.1158/1055-9965.EPI-06-0034

    Article  PubMed  Google Scholar 

  5. Boyd NF, Lockwood GA, Martin LJ, Knight JA, Byng JW, Yaffe MJ, Tritchler DL (1998) Mammographic densities and breast cancer risk. Breast Dis 10(3–4):113–126

    Article  CAS  PubMed  Google Scholar 

  6. Bartow SA, Pathak DR, Mettler FA, Key CR, Pike MC (1995) Breast mammographic pattern: a concatenation of confounding and breast cancer risk factors. Am J Epidemiol 142(8):813–819

    CAS  PubMed  Google Scholar 

  7. Ghosh K, Brandt KR, Reynolds C, Scott CG, Pankratz VS, Riehle DL, Lingle WL, Odogwu T, Radisky DC, Visscher DW, Ingle JN, Hartmann LC, Vachon CM (2012) Tissue composition of mammographically dense and non-dense breast tissue. Breast Cancer Res Treat 131(1):267–275. doi:10.1007/s10549-011-1727-4

    Article  PubMed  Google Scholar 

  8. Huo CW, Chew G, Hill P, Huang D, Ingman W, Hodson L, Brown KA, Magenau A, Allam AH, McGhee E, Timpson P, Henderson MA, Thompson EW, Britt K (2015) High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res 17:79. doi:10.1186/s13058-015-0592-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao MS, Khokha R, Martin L, Boyd N (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14(2):343–349. doi:10.1158/1055-9965.EPI-04-0490

    Article  PubMed  Google Scholar 

  10. Pang JM, Byrne DJ, Takano EA, Jene N, Petelin L, McKinley J, Poliness C, Saunders C, Taylor D, Mitchell G, Fox SB (2015) Breast tissue composition and immunophenotype and its relationship with mammographic density in women at high risk of breast cancer. PLoS One 10(6):e0128861. doi:10.1371/journal.pone.0128861

    Article  PubMed  PubMed Central  Google Scholar 

  11. Harvey JA, Santen RJ, Petroni GR, Bovbjerg VE, Smolkin ME, Sheriff FS, Russo J (2008) Histologic changes in the breast with menopausal hormone therapy use: correlation with breast density, estrogen receptor, progesterone receptor, and proliferation indices. Menopause 15(1):67–73. doi:10.1097/gme.0b013e318054e29a

    PubMed  PubMed Central  Google Scholar 

  12. Hawes D, Downey S, Pearce CL, Bartow S, Wan P, Pike MC, Wu AH (2006) Dense breast stromal tissue shows greatly increased concentration of breast epithelium but no increase in its proliferative activity. Breast Cancer Res 8(2):R24. doi:10.1186/bcr1408

    Article  PubMed  PubMed Central  Google Scholar 

  13. Russo J, Moral R, Balogh GA, Mailo D, Russo IH (2005) The protective role of pregnancy in breast cancer. Breast Cancer Res 7(3):131–142. doi:10.1186/bcr1029

    Article  PubMed  PubMed Central  Google Scholar 

  14. Russo J, Russo IH (1980) Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res 40(8 Pt 1):2677–2687

    CAS  PubMed  Google Scholar 

  15. Verheus M, Maskarinec G, Erber E, Steude JS, Killeen J, Hernandez BY, Cline JM (2009) Mammographic density and epithelial histopathologic markers. BMC Cancer 9:182. doi:10.1186/1471-2407-9-182

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang WT, Lewis MT, Hess K, Wong H, Tsimelzon A, Karadag N, Cairo M, Wei C, Meric-Bernstam F, Brown P, Arun B, Hortobagyi GN, Sahin A, Chang JC (2010) Decreased TGFβ signaling and increased COX2 expression in high risk women with increased mammographic breast density. Breast Cancer Res Treat 119(2):305–314. doi:10.1007/s10549-009-0350-0

    Article  CAS  PubMed  Google Scholar 

  17. KARMA (Karolinska mammography project for risk prediction of breast cancer). Karolinska Institutet. Available via Karolinska Institutet. http://karmastudy.org. 2016

  18. Lin SJ, Cawson J, Hill P, Haviv I, Jenkins M, Hopper JL, Southey MC, Campbell IG, Thompson EW (2011) Image-guided sampling reveals increased stroma and lower glandular complexity in mammographically dense breast tissue. Breast Cancer Res Treat 128(2):505–516. doi:10.1007/s10549-011-1346-0

    Article  PubMed  Google Scholar 

  19. Lim SZ, Ong KW, Tan BK, Selvarajan S, Tan PH (2016) Sarcoma of the breast: an update on a rare entity. J Clin Pathol. doi:10.1136/jclinpath-2015-203545

    Google Scholar 

  20. Boyd NF, Jensen HM, Cooke G, Han HL (1992) Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst 84(15):1170–1179

    Article  CAS  PubMed  Google Scholar 

  21. Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH (2003) Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res 5(5):R129–R135. doi:10.1186/bcr622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun X, Gierach GL, Sandhu R, Williams T, Midkiff BR, Lissowska J, Wesolowska E, Boyd NF, Johnson NB, Figueroa JD, Sherman ME, Troester MA (2013) Relationship of mammographic density and gene expression: analysis of normal breast tissue surrounding breast cancer. Clin Cancer Res 19(18):4972–4982. doi:10.1158/1078-0432.CCR-13-0029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stone J, Warren RM, Pinney E, Warwick J, Cuzick J (2009) Determinants of percentage and area measures of mammographic density. Am J Epidemiol 170(12):1571–1578. doi:10.1093/aje/kwp313

    Article  PubMed  Google Scholar 

  24. Stone J, Ding J, Warren RM, Duffy SW, Hopper JL (2010) Using mammographic density to predict breast cancer risk: dense area or percentage dense area. Breast Cancer Res 12(6):R97. doi:10.1186/bcr2778

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khan QJ, Kimler BF, O’Dea AP, Zalles CM, Sharma P, Fabian CJ (2007) Mammographic density does not correlate with Ki-67 expression or cytomorphology in benign breast cells obtained by random periareolar fine needle aspiration from women at high risk for breast cancer. Breast Cancer Res 9(3):R35. doi:10.1186/bcr1683

    Article  PubMed  PubMed Central  Google Scholar 

  26. Eriksson L, Czene K, Rosenberg L, Humphreys K, Hall P (2012) The influence of mammographic density on breast tumor characteristics. Breast Cancer Res Treat 134(2):859–866. doi:10.1007/s10549-012-2127-0

    Article  PubMed  Google Scholar 

  27. Holm J, Li J, Darabi H, Eklund M, Eriksson M, Humphreys K, Hall P, Czene K (2015) Associations of breast cancer risk prediction tools with tumor characteristics and metastasis. J Clin Oncol. doi:10.1200/JCO.2015.63.0624

    Google Scholar 

  28. Bertrand KA, Tamimi RM, Scott CG, Jensen MR, Pankratz V, Visscher D, Norman A, Couch F, Shepherd J, Fan B, Chen YY, Ma L, Beck AH, Cummings SR, Kerlikowske K, Vachon CM (2013) Mammographic density and risk of breast cancer by age and tumor characteristics. Breast Cancer Res 15(6):R104. doi:10.1186/bcr3570

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ding J, Warren R, Girling A, Thompson D, Easton D (2010) Mammographic density, estrogen receptor status and other breast cancer tumor characteristics. Breast J 16(3):279–289. doi:10.1111/j.1524-4741.2010.00907.x

    Article  PubMed  Google Scholar 

  30. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3–5):225–230

    Article  CAS  PubMed  Google Scholar 

  31. Carmona-Sanchez E, Cuadros Lopez JL, Cuadros Celorrio AM, Perez-Roncero G, Gonzalez Ramirez AR, Fernandez Alonso AM (2013) Assessment of mammographic density in postmenopausal women during long term hormone replacement therapy. Gynecol Endocrinol 29(12):1067–1070. doi:10.3109/09513590.2013.831831

    Article  PubMed  Google Scholar 

  32. Greendale GA, Reboussin BA, Sie A, Singh HR, Olson LK, Gatewood O, Bassett LW, Wasilauskas C, Bush T, Barrett-Connor E (1999) Effects of estrogen and estrogen-progestin on mammographic parenchymal density. Postmenopausal estrogen/progestin interventions (PEPI) investigators. Ann Intern Med 130(4 Part 1):262–269

    Article  CAS  PubMed  Google Scholar 

  33. Lundstrom E, Wilczek B, von Palffy Z, Soderqvist G, von Schoultz B (1999) Mammographic breast density during hormone replacement therapy: differences according to treatment. Am J Obstet Gynecol 181(2):348–352

    Article  CAS  PubMed  Google Scholar 

  34. McTiernan A, Martin CF, Peck JD, Aragaki AK, Chlebowski RT, Pisano ED, Wang CY, Brunner RL, Johnson KC, Manson JE, Lewis CE, Kotchen JM, Hulka BS, Women’s Health Initiative Mammogram Density Study Investigators (2005) Estrogen-plus-progestin use and mammographic density in postmenopausal women: Women’s Health Initiative randomized trial. J Natl Cancer Inst 97(18):1366–1376. doi:10.1093/jnci/dji279

    Article  CAS  PubMed  Google Scholar 

  35. Lochter A, Bissell MJ (1995) Involvement of extracellular matrix constituents in breast cancer. Semin Cancer Biol 6(3):165–173. doi:10.1006/scbi.1995.0017

    Article  CAS  PubMed  Google Scholar 

  36. Roskelley CD, Bissell MJ (1995) Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function. Biochem cell biol 73(7–8):391–397

    Article  CAS  PubMed  Google Scholar 

  37. Thorne JT, Segal TR, Chang S, Jorge S, Segars JH, Leppert PC (2015) Dynamic reciprocity between cells and their microenvironment in reproduction. Biol Reprod 92(1):25. doi:10.1095/biolreprod.114.121368

    Article  PubMed  Google Scholar 

  38. Cuzick J, Warwick J, Pinney E, Duffy SW, Cawthorn S, Howell A, Forbes JF, Warren RM (2011) Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst 103(9):744–752. doi:10.1093/jnci/djr079

    Article  CAS  PubMed  Google Scholar 

  39. Kim J, Han W, Moon HG, Ahn S, Shin HC, You JM, Han SW, Im SA, Kim TY, Koo H, Chang J, Cho N, Moon W, Noh DY (2012) Breast density change as a predictive surrogate for response to adjuvant endocrine therapy in hormone receptor positive breast cancer. Breast Cancer Res 14(4):R102. doi:10.1186/bcr3221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ko KL, Shin IS, You JY, Jung SY, Ro J, Lee ES (2013) Adjuvant tamoxifen-induced mammographic breast density reduction as a predictor for recurrence in estrogen receptor-positive premenopausal breast cancer patients. Breast Cancer Res Treat 142(3):559–567. doi:10.1007/s10549-013-2726-4

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Humphreys K, Eriksson L, Edgren G, Czene K, Hall P (2013) Mammographic density reduction is a prognostic marker of response to adjuvant tamoxifen therapy in postmenopausal patients with breast cancer. J Clin Oncol 31(18):2249–2256. doi:10.1200/JCO.2012.44.5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nyante SJ, Sherman ME, Pfeiffer RM, Berrington de Gonzalez A, Brinton LA, Aiello Bowles EJ, Hoover RN, Glass A, Gierach GL (2015) Prognostic significance of mammographic density change after initiation of tamoxifen for ER-positive breast cancer. J Natl Cancer Inst 107(3):dju425. doi:10.1093/jnci/dju425

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Märit and Hans Rausings Initiative Against Breast Cancer, the Swedish Research Council and the Kamprad Family Foundation for Entrepreneurship, Research & Charity. Giovanni Galvis Rojas is acknowledged for contributions during the initiation of this project.

Author’s contributions

MG drafted the manuscript, contributed to the study design and carried out the majority of the histological data analyses and postimaging analyses. FC provided critical statistical support, helped to interpret the corresponding data and revised the manuscript. JP, CS, CB and KR all critically participated in collection of tissue samples and histological preparation of tissues. KC helped to conceive of the study design, interpreted data and revised the manuscript. AÖ helped to conceive of the study and revised the manuscript. PH conceived of the study, participated in study design and data interpretation and helped to draft the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marike Gabrielson.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 365 kb)

Supplementary material 2 (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrielson, M., Chiesa, F., Paulsson, J. et al. Amount of stroma is associated with mammographic density and stromal expression of oestrogen receptor in normal breast tissues. Breast Cancer Res Treat 158, 253–261 (2016). https://doi.org/10.1007/s10549-016-3877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3877-x

Keywords

Navigation