Log in

Auto-acetylation stabilizes p300 in cardiac myocytes during acute oxidative stress, promoting STAT3 accumulation and cell survival

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The nuclear acetyltransferase p300 is rapidly and stably induced in the heart during hemodynamic stress, but the mechanism of this induction is unknown. To determine the role of oxidative stress in p300 induction, we exposed neonatal rat cardiac myocytes to doxorubicin (DOX, 1 μM) or its vehicle, and monitored p300 protein content and stability for 24 h. Levels of p300 rose substantially within 1 h and remained elevated for at least 24 h, while p300 transcript levels declined. In the presence of cycloheximide, the estimated half-life of p300 in control cells was approximately 4.5 h, typical of an immediate-early response protein. DOX treatment prolonged p300 t1/2 to >24 h, indicating that the sharp rise in p300 levels was attributable to rapid protein stabilization. p300 stabilization was entirely due to an increase in acetylated p300 species with greatly enhanced resistance to proteasomal degradation. The half-life of p300 was dependent on its acetyltransferase activity, falling in the presence of p300 inhibitors curcumin and anacardic acid, and increasing with histone deacetylase (HDAC) inhibition. At the same time, acetyl-STAT3, phospho-STAT3-(Tyr 705) and -(Ser 727) increased, together with a prolongation of STAT3 half-life. SiRNA-mediated p300 knockdown abrogated all of these effects, and strongly enhanced DOX-mediated myocyte apoptosis. We conclude that DOX induces an acute amplification of p300 levels through auto-acetylation and stabilization. In turn, elevated p300 provides a key defense against acute oxidative stress in cardiac myocytes by acetylation, activation, and stabilization of STAT3. Our results suggest that HDAC inhibitors could potentially reduce acute anthracycline-mediated cardiotoxicity by promoting p300 auto-acetylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ludke AR, Al-Shudiefat AA, Dhingra S, Jassal DS, Singal PK (2009) A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Can J Physiol Pharmacol 87(10):756–763

    Article  PubMed  Google Scholar 

  2. Gianni L, Salvatorelli E, Minotti G (2007) Anthracycline cardiotoxicity in breast cancer patients: synergism with trastuzumab and taxanes. Cardiovasc Toxicol 7(2):67–71

    Article  PubMed  CAS  Google Scholar 

  3. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229

    Article  PubMed  CAS  Google Scholar 

  4. Zhou S, Palmeira CM, Wallace KB (2001) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121(3):151–157

    Article  PubMed  CAS  Google Scholar 

  5. Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23(1):15–25

    Article  PubMed  CAS  Google Scholar 

  6. Ewer MS, Ewer SM (2010) Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol 7(10):564–575

    Article  PubMed  Google Scholar 

  7. Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW (2011) Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation 124(5):642–650

    Article  PubMed  Google Scholar 

  8. Vo NK, Goodman RH (2001) CBP and p300 in transcriptional regulation. J Biol Chem 276(17):13505–13508

    PubMed  CAS  Google Scholar 

  9. Giordano A, Avantaggiati ML (1999) p300 and CBP: partners for life and death. J Cell Physiol 181:218–230

    Article  PubMed  CAS  Google Scholar 

  10. Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68(6):1145–1155

    Article  PubMed  CAS  Google Scholar 

  11. Shikama N, Lyon J, La Thangue NB (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 7:230–236

    Article  CAS  Google Scholar 

  12. Poizat C, Puri PL, Bai Y, Kedes L (2005) Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol 25(7):2673–2687

    Article  PubMed  CAS  Google Scholar 

  13. Poizat C, Sartorelli V, Chung G, Kloner RA, Kedes L (2000) Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription. Mol Cell Biol 20(23):8643–8654

    Article  PubMed  CAS  Google Scholar 

  14. Chen J, Li Q (2011) Life and death of transcriptional co-activator p300. Epigenetics 6(8):957–961

    Article  PubMed  CAS  Google Scholar 

  15. Yu J, de Belle I, Liang H, Adamson ED (2004) Coactivating factors p300 and CBP are transcriptionally crossregulated by Egr1 in prostate cells, leading to divergent responses. Mol Cell 15(1):83–94

    Article  PubMed  CAS  Google Scholar 

  16. Nair AM, Michael B, Datta A, Fernandez S, Lairmore MD (2006) Calcium-dependent enhancement of transcription of p300 by human T-lymphotropic type 1 p12I. Virology 353(2):247–257

    Article  PubMed  CAS  Google Scholar 

  17. Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH (2008) Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118(9):934–946

    Article  PubMed  CAS  Google Scholar 

  18. Kawamura T, Hasegawa K, Morimoto T, Iwai-Kanai E, Miyamoto S, Kawase Y, Ono K, Wada H, Akao M, Kita T (2004) Expression of p300 protects cardiac myocytes from apoptosis in vivo. Biochem Biophys Res Commun 315(3):733–738

    Article  PubMed  CAS  Google Scholar 

  19. Bromberg J, Darnell JEJ (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19(21):2468–2473

    Article  PubMed  CAS  Google Scholar 

  20. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E, Poli V, Schneider MD, Schulz R, Park JK, Wollert KC, Drexler H (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95(2):187–195

    Article  PubMed  CAS  Google Scholar 

  21. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102(4):279–297

    Article  PubMed  CAS  Google Scholar 

  22. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102(1):131–135

    Article  PubMed  CAS  Google Scholar 

  23. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105(6):771–785

    Article  PubMed  CAS  Google Scholar 

  24. Ray S, Sherman CT, Lu M, Brasier AR (2002) Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acetyltransferase activity. Mol Endocrinol 16(4):824–836

    Article  PubMed  CAS  Google Scholar 

  25. Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, Osugi T, Izumi M, Oshima Y, Nakaoka Y, Hirota H, Kishimoto T, Yamauchi-Takihara K (2001) Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104(9):979–981

    Article  PubMed  CAS  Google Scholar 

  26. Harada M, Qin Y, Takano H, Minamino T, Zou Y, Toko H, Ohtsuka M, Matsuura K, Sano M, Nishi J, Iwanaga K, Akazawa H, Kunieda T, Zhu W, Hasegawa H, Kunisada K, Nagai T, Nakaya H, Yamauchi-Takihara K, Komuro I (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11(3):305–311

    Article  PubMed  CAS  Google Scholar 

  27. Madamanchi NR, Li S, Patterson C, Runge MS (2001) Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vasc Biol 21(3):321–326

    Article  PubMed  CAS  Google Scholar 

  28. Haga S, Terui K, Zhang HQ, Enosawa S, Ogawa W, Inoue H, Okuyama T, Takeda K, Akira S, Ogino T, Irani K, Ozaki M (2003) Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms. J Clin Invest 112(7):989–998

    PubMed  CAS  Google Scholar 

  29. Vigneron A, Gamelin E, Coqueret O (2008) The EGFR-STAT3 oncogenic pathway up-regulates the Eme1 endonuclease to reduce DNA damage after topoisomerase I inhibition. Cancer Res 68(3):815–825

    Article  PubMed  CAS  Google Scholar 

  30. Wang R, Cherukuri P, Luo J (2005) Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280(12):11528–11534

    Article  PubMed  CAS  Google Scholar 

  31. Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC (2006) Stat3 activation of NF-{kappa}B p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci USA 103(19):7264–7269

    Article  PubMed  CAS  Google Scholar 

  32. Ray S, Lee C, Hou T, Boldogh I, Brasier AR (2008) Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution. Nucleic Acids Res 36(13):4510–4520

    Article  PubMed  CAS  Google Scholar 

  33. Ray S, Boldogh I, Brasier AR (2005) STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology 129(5):1616–1632

    Article  PubMed  CAS  Google Scholar 

  34. Yuan ZL, Guan YJ, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307(5707):269–273

    Article  PubMed  CAS  Google Scholar 

  35. Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS, Gallick GE (2005) HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 24(19):3110–3120

    Article  PubMed  CAS  Google Scholar 

  36. Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284(5413):479–482

    Article  PubMed  CAS  Google Scholar 

  37. Paulson M, Pisharody S, Pan L, Guadagno S, Mui AL, Levy DE (1999) Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem 274(36):25343–25349

    Article  PubMed  CAS  Google Scholar 

  38. Bishopric NH, Kedes L (1991) Adrenergic regulation of the skeletal alpha-actin gene promoter during myocardial cell hypertrophy. Proc Natl Acad Sci USA 88:2132–2136

    Article  PubMed  CAS  Google Scholar 

  39. Murakami M, Nakagawa M, Olson EN, Nakagawa O (2005) A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci USA 102(50):18034–18039

    Article  PubMed  CAS  Google Scholar 

  40. Daino H, Matsumura I, Takada K, Odajima J, Tanaka H, Ueda S, Shibayama H, Ikeda H, Hibi M, Machii T, Hirano T, Kanakura Y (2000) Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood 95(8):2577–2585

    PubMed  CAS  Google Scholar 

  41. Safhi MM, Rutherford C, Ledent C, Sands WA, Palmer TM (2010) Priming of signal transducer and activator of transcription proteins for cytokine-triggered polyubiquitylation and degradation by the A 2A adenosine receptor. Mol Pharmacol 77(6):968–978

    Article  PubMed  CAS  Google Scholar 

  42. Gronroos E, Hellman U, Heldin CH, Ericsson J (2002) Control of Smad7 stability by competition between acetylation and ubiquitination. Mol Cell 10(3):483–493

    Article  PubMed  CAS  Google Scholar 

  43. ** YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, Lee KY, Bae SC (2004) Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem 279(28):29409–29417

    Article  PubMed  CAS  Google Scholar 

  44. Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, ** YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, Oh BC, Lee KS, Lee YH, Bae SC (2006) Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 281(24):16502–16511

    Article  PubMed  CAS  Google Scholar 

  45. Zhao Q, Cumming H, Cerruti L, Cunningham JM, Jane SM (2004) Site-specific acetylation of the fetal globin activator NF-E4 prevents its ubiquitination and regulates its interaction with the histone deacetylase, HDAC1. J Biol Chem 279(40):41477–41486

    Article  PubMed  CAS  Google Scholar 

  46. Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder RG, Wong J, Levrero M, Sartorelli V, Cotter RJ, Cole PA (2004) Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol 11(4):308–315

    Article  PubMed  CAS  Google Scholar 

  47. Stiehl DP, Fath DM, Liang D, Jiang Y, Sang N (2007) Histone deacetylase inhibitors synergize p300 autoacetylation that regulates its transactivation activity and complex formation. Cancer Res 67(5):2256–2264

    Article  PubMed  CAS  Google Scholar 

  48. Kim SH, Kang HJ, Na H, Lee MO (2010) Trichostatin A enhances acetylation as well as protein stability of ERalpha through induction of p300 protein. Breast Cancer Res 12(2):R22

    Article  PubMed  Google Scholar 

  49. Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J, Neckers L (2006) Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem 2(2):169–174

    Article  PubMed  CAS  Google Scholar 

  50. Dekker FJ, Haisma HJ (2009) Histone acetyl transferases as emerging drug targets. Drug Discov Today 14(19–20):942–948

    Article  PubMed  CAS  Google Scholar 

  51. Bertos NR, Wang AH, Yang XJ (2001) Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 79(3):243–252

    Article  PubMed  CAS  Google Scholar 

  52. Simone C, Stiegler P, Forcales SV, Bagella L, De Luca A, Sartorelli V, Giordano A, Puri PL (2004) Deacetylase recruitment by the C/H3 domain of the acetyltransferase p300. Oncogene 23(12):2177–2187

    Article  PubMed  CAS  Google Scholar 

  53. Marmorstein R, Trievel RC (2009) Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 1789(1):58–68

    Article  PubMed  CAS  Google Scholar 

  54. Marmorstein R (2001) Structure and function of histone acetyltransferases. Cell Mol Life Sci 58(5–6):693–703

    Article  PubMed  CAS  Google Scholar 

  55. Karanam B, Jiang L, Wang L, Kelleher NL, Cole PA (2006) Kinetic and mass spectrometric analysis of p300 histone acetyltransferase domain autoacetylation. J Biol Chem 281(52):40292–40301

    Article  PubMed  CAS  Google Scholar 

  56. Black JC, Mosley A, Kitada T, Washburn M, Carey M (2008) The SIRT2 deacetylase regulates autoacetylation of p300. Mol Cell 32(3):449–455

    Article  PubMed  CAS  Google Scholar 

  57. Kong S, Kim SJ, Sandal B, Lee SM, Gao B, Zhang DD, Fang D (2011) The type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation. J Biol Chem 286(19):16967–16975

    Article  PubMed  CAS  Google Scholar 

  58. Hosseinkhani M, Hasegawa K, Ono K, Kawamura T, Takaya T, Morimoto T, Wada H, Shimatsu A, Prat SG, Suemori H, Nakatsuji N, Kita T (2007) Trichostatin A induces myocardial differentiation of monkey ES cells. Biochem Biophys Res Commun 356(2):386–391

    Article  PubMed  CAS  Google Scholar 

  59. Giandomenico V, Simonsson M, Gronroos E, Ericsson J (2003) Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol Cell Biol 23(7):2587–2599

    Article  PubMed  CAS  Google Scholar 

  60. Vervoorts J, Luscher-Firzlaff JM, Rottmann S, Lilischkis R, Walsemann G, Dohmann K, Austen M, Luscher B (2003) Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep 4(5):484–490

    Article  PubMed  CAS  Google Scholar 

  61. Galbiati L, Mendoza-Maldonado R, Gutierrez MI, Giacca M (2005) Regulation of E2F-1 after DNA damage by p300-mediated acetylation and ubiquitination. Cell Cycle 4(7):930–939

    Article  PubMed  CAS  Google Scholar 

  62. Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H, Nakatani Y, Livingston DM (2003) Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300(5617):342–344

    Article  PubMed  CAS  Google Scholar 

  63. Col E, Caron C, Chable-Bessia C, Legube G, Gazzeri S, Komatsu Y, Yoshida M, Benkirane M, Trouche D, Khochbin S (2005) HIV-1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses. EMBO J 24(14):2634–2645

    Article  PubMed  CAS  Google Scholar 

  64. Morimoto T, Fujita M, Kawamura T, Sunagawa Y, Takaya T, Wada H, Shimatsu A, Kita T, Hasegawa K (2008) Myocardial regulation of p300 and p53 by doxorubicin involves ubiquitin pathways. Circ J 72(9):1506–1511

    Article  PubMed  CAS  Google Scholar 

  65. Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, Hasegawa H, Akazawa H, Mizukami M, Nagai R, Komuro I (2001) Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun 289(4):901–907

    Article  PubMed  CAS  Google Scholar 

  66. Smith KT, Workman JL (2009) Histone deacetylase inhibitors: anticancer compounds. Int J Biochem Cell Biol 41(1):21–25

    Article  PubMed  CAS  Google Scholar 

  67. Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15(12):3958–3969

    Article  PubMed  CAS  Google Scholar 

  68. Munster PN, Marchion D, Thomas S, Egorin M, Minton S, Springett G, Lee JH, Simon G, Chiappori A, Sullivan D, Daud A (2009) Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br J Cancer 101(7):1044–1050

    Article  PubMed  CAS  Google Scholar 

  69. Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, Seto E (2000) Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet 26(3):349–353

    Article  PubMed  CAS  Google Scholar 

  70. Marchion DC, Bicaku E, Daud AI, Richon V, Sullivan DM, Munster PN (2004) Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem 92(2):223–237

    Article  PubMed  CAS  Google Scholar 

  71. Marchion DC, Bicaku E, Turner JG, Schmitt ML, Morelli DR, Munster PN (2009) HDAC2 regulates chromatin plasticity and enhances DNA vulnerability. Mol Cancer Ther 8(4):794–801

    Article  PubMed  CAS  Google Scholar 

  72. Ganz PA, Hussey MA, Moinpour CM, Unger JM, Hutchins LF, Dakhil SR, Giguere JK, Goodwin JW, Martino S, Albain KS (2008) Late cardiac effects of adjuvant chemotherapy in breast cancer survivors treated on Southwest Oncology Group protocol s8897. J Clin Oncol 26(8):1223–1230

    Article  PubMed  CAS  Google Scholar 

  73. Morris PG, Chen C, Steingart R, Fleisher M, Lin N, Moy B, Come S, Sugarman S, Abbruzzi A, Lehman R, Patil S, Dickler M, McArthur HL, Winer E, Norton L, Hudis CA, Dang CT (2011) Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clin Cancer Res 17(10):3490–3499

    Article  PubMed  CAS  Google Scholar 

  74. Trachtenberg BH, Landy DC, Franco VI, Henkel JM, Pearson EJ, Miller TL, Lipshultz SE (2011) Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol 32(3):342–353

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Paul Kurlansky for insightful comments on the text. This study was supported by grants from the National Institutes of Health (NHLBI R01- HL71094 to N.H.B.) and the Florida Heart Research Institute (to N.H.B.), and an American Heart Association Greater Southeastern Affiliate Predoctoral Fellowship award (to S.J.).

Conflict of interest

None of the authors has any financial or other conflict of interest relative to the material presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanette H. Bishopric.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S., Wei, J., Mitrani, L.R. et al. Auto-acetylation stabilizes p300 in cardiac myocytes during acute oxidative stress, promoting STAT3 accumulation and cell survival. Breast Cancer Res Treat 135, 103–114 (2012). https://doi.org/10.1007/s10549-012-2069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2069-6

Keywords

Navigation